Calculus II: Fall 2017
 Contact: gmelvin@middlebury.edu

October 2 Lecture

Supplementary References:

- Discrete Mathematics 6 its Applications, Rosen: Section 3.2.
- Series $\xi^{\text {I }}$ Induction, Khan Academy: Induction.

Mathematical Induction

Get Creative!
We are going to investigate a formula for the sum \mathcal{O}_{n} of the first n odd natural numbers.

$$
\mathcal{O}_{n}=1+3+5+7+9+\ldots+(2 n-1)
$$

1. Determine $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}$.
2. Guess the value of \mathcal{O}_{n}.
3. Use the following diagram to explain the value you obtained for \mathcal{O}_{3}.

4. Using the above diagram, give a similar visual representation of \mathcal{O}_{4}.
5. Using your guess for \mathcal{O}_{n}, explain how you could obtain the value for \mathcal{O}_{n+1}. (You can either explain in words and/or make us of a diagram to justify your explanation)

1 Mathematical induction Many mathematical theorems are of the form

$$
P(n) \text {, for every natural number } n \text {. }
$$

Here $P(n)$ is some mathematical proposition that depends on n.
Example 1.1. Here are some examples of mathematical propositions $P(n)$ dependent on n.

1. $P(n): \quad \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.
2. $P(n): \quad n<2^{n}$.
3. $P(n)$: for every real number $r \neq 1, r+r^{2}+r^{3}+\ldots+r^{n}=\frac{r\left(1-r^{n}\right)}{1-r}$.

Check your understanding

Complete the following mathematical proposition:

$$
P(n): \quad \text { the sum of the first }
$$

\qquad natural numbers is \qquad
Brain teaser!
Consider the following situation: Suppose that we have an infinite line of people, called Person 1 , Person 2, Person 3, .. etc. We have also been provided with the following information.
B. It is known that Person 1 has received a Snapchat message.
I. It is also known that, whenever Person k receives a Snapchat message they will immediately send a Snapchat message to Person $k+1$.

Check your understanding

Provided with the information B and I, we will investigate the following question:
Q: is it possible that there is some person who does not receive a Snapchat?

1. What is your preliminary (i.e. after <5 seconds thought) answer to the question above: YeS or No?
2. Let's suppose the answer is Yes. This means there is some person, Person k say, who does not receive a Snapchat. Assume, further, that Person k is the least such person to not receive a Snapchat i.e. if Person l does not receive a Snapchat then $l \geq k$. Explain why Person $k-1$ must have received a Snapchat message.
3. Explain why, given all of the information above, Person k must have both received and not received a Snapchat.
4. What do now believe is the answer to Q ?

The proof technique known as mathematical induction provides a valid approach to proving statements of the form (*). It proceeds as follows:

1. Base case. Show directly that the proposition $P(1)$ is true.
2. Inductive step. Show that the statement

$$
\text { 'if } P(n) \text { then } P(n+1) \text { ' }
$$

holds for any natural number n.

Determining both the Base case and the Inductive step is sufficient to obtain $P(n)$, for every natural number n. The reasoning is similar to the Snapchat message problem above.

Remark 1.2. The assumption 'if $P(n)$ ' in the Inductive step is called the inductive hypothesis.

Example 1.3. Let $P(n)$ be the proposition

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

We will show, by mathematical induction, that $P(n)$ holds, for every natural number n.
BASE CASE: $P(1)$ is the proposition

$$
P(1): \quad \sum_{i=0}^{1} 2^{i}=2^{2}-1 .
$$

This holds since the left hand side is $1+2=3=2^{2}-1$. hence, the BASE CASE is true.
Inductive step: Suppose that $P(k)$ is true, for a natural number k. We want to show that this implies that $P(k+1)$ is true: this will verify the Inductive step.

So, assume that the proposition $P(k)$ is true, for a natural number k. Hence, we know that

$$
\sum_{i=0}^{k} 2^{i}=2^{k+1}-1
$$

Consider the proposition

$$
P(k+1): \quad \sum_{i=0}^{k+1} 2^{i}=2^{(k+1)+1}-1 .
$$

We want to show that this proposition holds true. Now, the left hand side of the above expression is

$$
\sum_{i=0}^{k+1} 2^{i}=2^{k+1}+\sum_{i=0}^{k} 2^{i}
$$

Since we know, by assumption, that $P(k)$ is true, we can rewrite the right hand side of this expression to get

$$
\begin{aligned}
\sum_{i=0}^{k+1} 2^{i} & =2^{k+1}+\left(2^{k+1}-1\right) \\
& =2 \cdot 2^{k+1}-1 \\
& =2^{(k+1)+1}-1
\end{aligned}
$$

Hence, if $P(k)$ holds then $P(k+1)$ holds.
Therefore, by mathematical induction, $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$, for every natural number n.
Check your understanding
Prove the following statements using mathematical induction.

1. The sum of the first n odd integers is n^{2}, for every natural number n.
2. For every natural number $n, n<2^{n}$. Use your result to deduce that the alternating series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}$ is convergent.
