Middlebury College

October 19 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.3.
- Calculus, Spivak, 3rd Ed.: Section 19.
- AP Calculus BC, Khan Academy: Antiderivatives and the fundamental theorem of calculus.

Techniques of Integration III. Inverse Trigonometric Substitutions.

Today we will begin to investigate the method of inverse trigonometric substitution.

1 Trigonometric integrals You saw yesterday how to approach integrals of the form

$$
\int \sin ^{n}(x) \cos ^{m}(x) d x
$$

where $m, n \geq 0$ are integers, at least one of which is odd. What if both m and n are even? How can we determine the integral in this case?

Mathematical workout - Flex those muscles!
Recall the trigonometric formulae

$$
\begin{gathered}
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x) \\
1=\cos ^{2}(x)+\sin ^{2}(x)
\end{gathered}
$$

Use these formulae to complete the following statements:

- $\sin ^{2}(x)=$ \qquad - \qquad $\cos (2 x)$
- $\cos ^{2}(x)=$ \qquad $+$ \qquad $\cos (2 x)$

Check your understanding
Determine

$$
\int \cos ^{2}(x) d x
$$

Remark 1.1. In Problem Set 5 you will investigate integrals of the form

$$
\int \tan ^{n}(x) \sec ^{m}(x) d x
$$

where $m, n \geq 0$ are integers. As we will see later in the course, these trigonometric integrals arise frequently in computations of arc length: for example, in determining the perimeter of an ellipse.

A useful trigonometric identity is

$$
\begin{equation*}
\sin (x) \cos (x)=\frac{1}{2} \sin (2 x) \tag{*}
\end{equation*}
$$

Check your understanding

1. Use $(*)$ and an identity above to show that

$$
\cos ^{2}(x) \sin ^{2}(x)=\frac{1}{8}(1-\cos (4 x))
$$

2. Determine

$$
\int \cos ^{2}(x) \sin ^{2}(x) d x
$$

The identity $(*)$ is a special case of the following trigonometric identities

- $\sin (x \pm y)=\sin (x) \cos (y) \pm \cos (x) \sin (y)$
- $\cos (x \pm y)=\cos (x) \cos (y) \mp \sin (x) \sin (y)$

Mathematical workout - Flex those muscles!

1. Use the identities

$$
\begin{aligned}
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
$$

to show that

$$
\text { - } \quad \cos (x) \cos (y)=\frac{1}{2}(\cos (x-y)+\cos (x+y))
$$

2. Complete the following identities:

$$
\begin{aligned}
& \text { - } \sin (x) \cos (y)=\frac{1}{2}(\square+\sin (x+y)) \\
& \text { - } \sin (x) \sin (y)=\frac{1}{2}(\square)
\end{aligned}
$$

Example 1.2. The above identities are very useful. For example, if we are looking to determine

$$
\int \sin (5 x) \cos (4 x) d x
$$

then we can write

$$
\sin (5 x) \cos (4 x)=\frac{1}{2}(\sin (x)+\sin (9 x))
$$

Hence,

$$
\int \sin (5 x) \cos (4 x) d x=-\frac{1}{2}\left(\cos (x)+\frac{1}{9} \cos (9 x)\right)+C
$$

2 Inverse trigonometric substitution In this paragraph we will develop an approach to determine integrals whose integrands contain an expression of the form

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{a^{2}+x^{2}}, \quad \sqrt{x^{2}-a^{2}}
$$

This is known as the method of inverse trigonometric substitution.
Mathematical workout - Flex those muscles
Using the identity

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

obtain the following identities

- $1+\tan ^{2}(x)=\sec ^{2}(x)$
- $\sec ^{2}(x)-1=\tan ^{2}(x)$

We are now going to apply the method of substitution in reverse. Recall that the method of substitution is an approach to solving the antiderivative problem

$$
\int h(x) d x
$$

by taking the following strategy:

1. Determine $f(x)$ and $g(x)$ such that, if we write $u=g(x)$ then $h(x)=f(u) \frac{d u}{d x}$.
2. Determine $\int f(u) d u$ (if possible).
3. Substitute $g(x)$ for u.

Check your understanding

Consider the integral

$$
\begin{equation*}
\int(\sin (x)-1) d x \tag{**}
\end{equation*}
$$

This is straightforward to solve. Let's make life difficult.

1. By writing $u=\sin (x)$, show that

$$
\frac{u-1}{\sqrt{1-u^{2}}} \frac{d u}{d x}=\sin (x)-1
$$

2. If we wanted to use the substitution $u=\sin (x)$ to solve $(* *)$ then we would have to determine

$$
\int \frac{u-1}{\sqrt{1-u^{2}}} d u
$$

Using the subsitution $v=u^{2}$, and recalling that $\frac{d}{d u} \arcsin (u)=\frac{1}{\sqrt{1-u^{2}}}$, determine this integral.

Question: was the method of substitution really necessary?
Answer: \qquad
The above example highlights the method of inverse trigonometric substitution. Let's see some examples.

Example 2.1. 1. To determine the integral

$$
\int \sqrt{9-x^{2}} d x
$$

We make the substitution

$$
x=3 \sin (t)
$$

Then,

$$
\sqrt{9-x^{2}} \frac{d x}{d t}=9 \cos ^{2}(t)
$$

Hence, by inverse substitution

$$
\int \sqrt{9-x^{2}} d x=\int 9 \cos ^{2}(t) d t=
$$

Check your understanding

1. By letting $x=\tan (t)$, use the method of inverse substitution to explain why

$$
\int \frac{1}{x^{2} \sqrt{x^{2}+1}} d x=\int \frac{\cos (t)}{\sin ^{2}(t)} d t
$$

2. Determine

$$
\int \frac{\cos (t)}{\sin ^{2}(t)} d t
$$

