

October 13 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.6.
- Calculus, Spivak, 3rd Ed.: Section 15.

INVERSE TRIGONOMETRIC FUNCTIONS

Today we introduce the inverse trigonometric functions and their derivatives.

1 Inverse sine function In this paragraph we will begin an investigation into the *inverse trigonometric functions*

CHECK YOUR UNDERSTANDING

1. Let $f(x) = \sin(x)$. Draw the graph of f(x).

2. Explain why f(x) is not one-to-one.

(Recall: f(x) is one-to-one if distinct inputs give distinct outputs)

- 3. Determine a domain $A: a \le x \le b$ on which f(x) is one-to-one.
- 4. What is the range B of f(x) when the inputs are restricted to A?

5. Explain why an inverse function $f^{-1}(y)$ to f(x) exists, when we restrict to domain A.

6. Draw the graph of $f^{-1}(y)$

Definition 1.1. Consider the function $f(x) = \sin(x)$, with domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Then, f(x) is one-to-one and we call its inverse function $f^{-1}(y)$ the **inverse sine function**, which we denote $\arcsin(y)$.

CHECK YOUR UNDERSTANDING

Complete the following statement:

Remark 1.2. 1. We write $\arcsin(y)$ instead of $\sin^{-1}(y)$ to avoid confusion with the common notation $\sin^k(x) = (\sin(x))^k$.

2. As the inverse function of sin(x), the following functional relationship holds:

sin(arcsin(y)) = y, for every ______,
arcsin(sin(x)) = x, for every ______.

3. In words:

" $\operatorname{arcsin}(y)$ is the arc whose sine is y"

This is demonstrated by the following diagram: (recall that, the length of the arc drawn below is x, whenever the angle x is measured in radians)

Since $f(x) = \sin(x)$ is a differentiable function the same is true of $\arcsin(y)$. Using the formula for the derivative of an inverse function

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$$

we have

$$\frac{d}{dy}\operatorname{arcsin}(y) = \frac{1}{f'(\operatorname{arcsin}(y))} = \frac{1}{\cos(\operatorname{arcsin}(y))} = \frac{1}{\sqrt{1-y^2}}$$

Here we have used that the derivative of sin is cos, and used the above triangle to show that $\cos(\arcsin(y)) = \sqrt{1-y^2}$.

Hence,

$$\arcsin(x)$$
 is an antiderivative of $\frac{1}{\sqrt{1-x^2}}$

2 Inverse cosine function

Definition 2.1. Consider the function f(x) = cos(x), with domain $0 \le x \le \pi$. Then, f(x) is one-to-one and we call its inverse function $f^{-1}(y)$ the **inverse cosine function**, which we denote arccos(y).

- the domain of $\arccos(y)$ is $-1 \le y \le 1$
- the range of $\arccos(y)$ is $0 \le y \le \pi$

" $\arccos(y)$ is the arc whose cosine is y"

CHECK YOUR UNDERSTANDING

1. Draw the graph of $x = \arccos(y)$

2. Suppose $x = \arccos(y)$. Complete the following diagram as we did above.

3. Deterine the following value:

4. Use the formula for the derivative of an inverse function Complete the following statement:

 $\arccos(x)$ is an antiderivative of _____

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES

Before Monday's class determine $\arctan'(x)$.