Middlebury
College

## October 13 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.6.
- Calculus, Spivak, 3rd Ed.: Section 15.


## Inverse Trigonometric functions

Today we introduce the inverse trigonometric functions and their derivatives.

1 Inverse sine function In this paragraph we will begin an investigation into the inverse trigonometric functions

Check your understanding

1. Let $f(x)=\sin (x)$. Draw the graph of $f(x)$.

2. Explain why $f(x)$ is not one-to-one.
(Recall: $f(x)$ is one-to-one if distinct inputs give distinct outputs)
3. Determine a domain $A: a \leq x \leq b$ on which $f(x)$ is one-to-one.
4. What is the range $B$ of $f(x)$ when the inputs are restricted to $A$ ?
5. Explain why an inverse function $f^{-1}(y)$ to $f(x)$ exists, when we restrict to domain $A$.
6. Draw the graph of $f^{-1}(y)$


Definition 1.1. Consider the function $f(x)=\sin (x)$, with domain $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Then, $f(x)$ is one-to-one and we call its inverse function $f^{-1}(y)$ the inverse sine function, which we denote $\arcsin (y)$.

## Check your understanding

Complete the following statement:

- the domain of $\arcsin (y)$ is $\qquad$
- the range of $\arcsin (y)$ is $\qquad$
Remark 1.2. 1. We write $\arcsin (y)$ instead of $\sin ^{-1}(y)$ to avoid confusion with the common notation $\sin ^{k}(x)=(\sin (x))^{k}$.

2. As the inverse function of $\sin (x)$, the following functional relationship holds:
$\square$

- $\sin (\arcsin (y))=y, \quad$ for every ,
- $\arcsin (\sin (x))=x$, for every .

3. In words:
"arcsin$(y)$ is the arc whose sine is $y$ "

This is demonstrated by the following diagram: (recall that, the length of the arc drawn below is $x$, whenever the angle $x$ is measured in radians)


Since $f(x)=\sin (x)$ is a differentiable function the same is true of $\arcsin (y)$. Using the formula for the derivative of an inverse function

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

we have

$$
\frac{d}{d y} \arcsin (y)=\frac{1}{f^{\prime}(\arcsin (y))}=\frac{1}{\cos (\arcsin (y))}=\frac{1}{\sqrt{1-y^{2}}}
$$

Here we have used that the derivative of sin is cos, and used the above triangle to show that $\cos (\arcsin (y))=\sqrt{1-y^{2}}$.

Hence,
$\arcsin (x)$ is an antiderivative of $\frac{1}{\sqrt{1-x^{2}}}$

## 2 Inverse cosine function

Definition 2.1. Consider the function $f(x)=\cos (x)$, with domain $0 \leq x \leq \pi$. Then, $f(x)$ is one-to-one and we call its inverse function $f^{-1}(y)$ the inverse cosine function, which we denote $\arccos (y)$.

- the domain of $\arccos (y)$ is $-1 \leq y \leq 1$
- the range of $\arccos (y)$ is $0 \leq y \leq \pi$
"arccos(y) is the arc whose cosine is $y$ "


## Check your understanding

1. Draw the graph of $x=\arccos (y)$

2. Suppose $x=\arccos (y)$. Complete the following diagram as we did above.

3. Deterine the following value:

$$
\sin (\arccos (y))=
$$

$\qquad$
4. Use the formula for the derivative of an inverse function Complete the following statement:
$\arccos (x)$ is an antiderivative of $\qquad$
Before Monday's class determine $\arctan ^{\prime}(x)$.

