## Calculus II: Fall 2017 <br> Contact: gmelvin@middlebury.edu

## October 12 Lecture

## Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.2*, 6.3*.
- Calculus, Spivak, 3rd Ed.: Section 18.


## The natural Logarithm

Today we introduce the natural logarithm function as the inverse function of $\exp (x)$.

1 The derivative of inverse functions Let $f(x)$ be a one-to-one function with domain $A$ and range $B$. Then, $f$ and its inverse function $f^{-1}$ satisfy the following functional relationship:

$$
\begin{array}{ll}
f\left(f^{-1}(y)\right)=y, & \text { for every } y \text { in } B,  \tag{*}\\
f^{-1}(f(x))=x, & \text { for every } x \text { in } A .
\end{array}
$$

If $f(x)$ is also a differentiable function (i.e. its derivative $f^{\prime}(x)$ exists for every $x$ in its domain $A$ ) then its inverse function is also differentiable. In fact, the derivative of $f^{-1}(y)$ can be determined in terms of the derivative of $f^{\prime}(x)$.

First, we recall the chain rule from Calculus I.
Check your understanding
Compute $\frac{d y}{d x}$ where

$$
y=x^{2}+4 x+\frac{1}{x^{2}+4 x}
$$

The precise version of the Chain Rule is given as follows:

## Chain Rule

Let $f$ and $g$ be differentiable functions. Then,

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example 1.1. Let $f(x)=x+\frac{1}{x}$ and $g(x)=x^{2}+4 x$. We have

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}, \quad g^{\prime}(x)=2 x+4
$$

Then, the chain rule states that

$$
\frac{d}{d x}\left(x+\frac{1}{x^{2}+4 x}\right)=\frac{d}{d x} f(g(x))=f^{\prime}\left(x^{2}+4 x\right) \cdot g^{\prime}(x)=\left(1-\frac{1}{\left(x^{2}+4 x\right)^{2}}\right)(2 x+4)
$$

You can check that this agrees with your calculation above.
Now we investigate a useful expression for the differentiability of an inverse function.
Check your understanding
Recall the function $f(x)=1-\frac{1}{x}$ from October 11 Lecture. We determined the inverse function to be

$$
f^{-1}(y)=\frac{1}{1-y}
$$

1. Compute

$$
\frac{d}{d y} f^{-1}(y)
$$

2. Compute $f^{\prime}(x)$.
3. Show that

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Proposition 1.2. Let $f(x)$ be a differentiable one-to-one function. Suppose that $f^{\prime}\left(f^{-1}(y)\right) \neq 0$, for all $y$. Then, $f^{-1}(y)$ is differentiable and

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Proof: This follows from the functional relationship ( $*$ ) and the chain rule. We have, for every $y$,

$$
f\left(f^{-1}(y)\right)=y
$$

Now, differentiating with respect to $y$ (remember, we are wanting the derivative of the function $f^{-1}(y)$ with respect to $\left.y\right)$ and using the chain rule, we find

$$
\begin{aligned}
& 1=\frac{d}{d y}\left(f\left(f^{-1}(y)\right)\right)=f^{\prime}\left(f^{-1}(y)\right) \cdot\left(f^{-1}\right)^{\prime}(y) \\
& \Longrightarrow \quad \frac{d}{d y}\left(f^{-1}(y)\right)=\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
\end{aligned}
$$

2 The natural logarithm I We apply Proposition 1.2 to the function $f(x)=\exp (x)$.
First, we recall the following facts about $\exp (x)$ :

1. $\exp (x)$ is strictly increasing. Hence, $\exp (x)$ is one-to-one.
2. The domain of $\exp (x)$ is the collection of all real numbers.
3. The range of $\exp (x)$ is the collection of all $y>0$ : indeed, since $\exp (x)$ is differentiable it is continuous. We have also seen that $\exp (x) \rightarrow+\infty$ as $x \rightarrow+\infty$. Using $\exp (-x)=1 / \exp (x)$ we see that $\exp (x) \rightarrow 0$ as $x \rightarrow-\infty$. This implies that the range of $\exp (x)$ is the collection of all positive real numbers.
Hence, $\exp (x)$ has an inverse function $\exp ^{-1}(x)$.
Remark 2.1. 1. By the above remarks,

- the domain of $\exp ^{-1}(y)$ is the collection of all $y>0$
- the range of $\exp ^{-1}(y)$ is the collection of all real numbers

2. We will often write $\exp ^{-1}(x)$ instead of $\exp ^{-1}(y)$. Remember, it doesn't matter what symbol we use for our input variable as long as we are consistent in a computation.
We have seen that $f(x)=\exp (x)$ is a differentiable function so that $\exp ^{-1}(y)$ is also differentiable. We apply Proposition 1.2 to obtain

$$
\frac{d}{d y} \exp ^{-1}(y)=\frac{1}{f^{\prime}\left(\exp ^{-1}(y)\right)}
$$

Recall that $f^{\prime}(x)=\exp (x)$. Therefore, $f^{\prime}\left(\exp ^{-1}(y)\right)=\exp \left(\exp ^{-1}(y)\right)=y$, using functional property (*). Hence,

$$
\begin{equation*}
\frac{d}{d y} \exp ^{-1}(y)=\frac{1}{y} \tag{**}
\end{equation*}
$$

3 A Fundamental interlude Let $f(x)$ be a function. An antiderivative of $f(x)$ is a differentiable function $F(x)$ satisfying

$$
\frac{d}{d x} F(x)=f(x)
$$

Proposition 3.1. If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ then

$$
F(x)=G(x)+c,
$$

for some constant c. In particular, if $F(x)$ is some antiderivative of $f(x)$ then every antiderivative of $f(x)$ is of the form

$$
F(x)+c, \quad \text { where } c \text { is a constant. }
$$

Remark 3.2. This Proposition indicates where the constant of integration comes from when we are computing antiderivatives: given a function $f(x)$ there is a family of antiderivatives associated to $f(x)$.

The most important Theorem you saw in Calculus I was an approach to determining the antiderivative of a continuous function.

## Fundamental Theorem of Calculus

Let $f(x)$ be a continuous function defined on the closed interval $a \leq x \leq b$. Then, the function

$$
F(x)=\int_{a}^{x} f(u) d u
$$

is an antiderivative of $f(x)$.

4 The natural logarithm II We can restate ( $* *$ ) as follows:

$$
\exp ^{-1}(x) \text { is an antiderivative of } g(x)=\frac{1}{x} \text {. }
$$

We now give a name to a particular antiderivative of $g(x)=\frac{1}{x}$.
Definition 4.1. The natural logarithm function is the function

$$
\log (x)=\int_{1}^{x} \frac{d t}{t}
$$

By the Fundamental Theorem of Calculus, $\log (x)$ is an antiderivative of $\mathfrak{g}(x)=\frac{1}{x}$. Hence, Proposition 3.1 implies that there is a constant $c$ so that

$$
\exp ^{-1}(x)=\log (x)+c
$$

Since $\exp (0)=1$, we must have $\exp ^{-1}(1)=0$, giving

$$
0=\exp ^{-1}(1)=\log (1)+c=\int_{1}^{1} \frac{d t}{t}+c=c
$$

Hence,

The natural $\operatorname{logarithm}$ function $\log (x)$ defined above is the inverse function $\exp ^{-1}(x)$,

$$
\log (x)=\exp ^{-1}(x)
$$

Remark 4.2. 1. In Problem Set 4 you will show that the function $\log (x)$ just defined as the inverse of $\exp (x)$ satisfies the expected logarithm rules:

- $\log (x y)=\log (x)+\log (y)$, for every $x, y>0$.
- $\log \left(x^{n}\right)=n \log (x)$, for every $x>0$ and natural number $n$.

2. As the inverse function of $\exp (x)$, the following functional relationships hold:

- $\exp (\log (y))=y, \quad$ for every $y>0$,
- $\log (\exp (x))=x, \quad$ for every $x$.

3. We have claimed that

$$
\exp (x)=e^{x}, \quad \text { where } e=\exp (1) \text { is Euler's number. }
$$

In this way we see that $\log (x)=\ln (x)$ is the logarithm base $e$ function.

## Check your understanding

1. Use the definition $\log (x)=\int_{1}^{x} \frac{d t}{t}$ to explain why $\log$ is an increasing function: i.e. if $0<x<y$ explain why $\log (x)<\log (y)$.
2. Using the fact that $\log (x)$ is the inverse function to $\exp (x)$, complete the following statements:

- $\log (x)>0$ whenever $\qquad$
- $\log (x)<0$ whenever $\qquad$

5 Inverse trigonometric functions In this paragraph we will begin an investigation into the inverse trigonometric functions

Check your understanding

1. Let $f(x)=\sin (x)$. Draw the graph of $f(x)$.

2. Explain why $f(x)$ is not one-to-one.
3. Determine a domain $A: a \leq x \leq b$ on which $f(x)$ is one-to-one.
4. What is the range $B$ of $f(x)$ when the inputs are restricted to $A$ ?
5. Explain why an inverse function $f^{-1}(y)$ to $f(x)$, when we restrict to domain $A$, exists.
6. Draw the graph of $f^{-1}(y)$

