

October 12 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.2*, 6.3*.
- Calculus, Spivak, 3rd Ed.: Section 18.

The natural logarithm

Today we introduce the natural logarithm function as the inverse function of $\exp(x)$.

1 The derivative of inverse functions Let f(x) be a one-to-one function with domain A and range B. Then, f and its inverse function f^{-1} satisfy the following functional relationship:

$$f(f^{-1}(y)) = y, \quad \text{for every } y \text{ in } B, \tag{*}$$
$$f^{-1}(f(x)) = x, \quad \text{for every } x \text{ in } A.$$

If f(x) is also a differentiable function (i.e. its derivative f'(x) exists for every x in its domain A) then its inverse function is also differentiable. In fact, the derivative of $f^{-1}(y)$ can be determined in terms of the derivative of f'(x).

First, we recall the *chain rule* from Calculus I.

CHECK YOUR UNDERSTANDING

Compute $\frac{dy}{dx}$ where

$$y = x^2 + 4x + \frac{1}{x^2 + 4x}$$

The precise version of the Chain Rule is given as follows:

Chain Rule

Let f and g be differentiable functions. Then,

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Example 1.1. Let $f(x) = x + \frac{1}{x}$ and $g(x) = x^2 + 4x$. We have

$$f'(x) = 1 - \frac{1}{x^2}, \qquad g'(x) = 2x + 4.$$

Then, the chain rule states that

$$\frac{d}{dx}\left(x+\frac{1}{x^2+4x}\right) = \frac{d}{dx}f(g(x)) = f'(x^2+4x) \cdot g'(x) = \left(1-\frac{1}{(x^2+4x)^2}\right)(2x+4)$$

You can check that this agrees with your calculation above.

Now we investigate a useful expression for the differentiability of an inverse function.

CHECK YOUR UNDERSTANDING

Recall the function $f(x) = 1 - \frac{1}{x}$ from October 11 Lecture. We determined the inverse function to be

$$f^{-1}(y) = \frac{1}{1-y}$$

1. Compute

$$\frac{d}{dy}f^{-1}(y).$$

2. Compute f'(x).

3. Show that

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}.$$

Proposition 1.2. Let f(x) be a differentiable one-to-one function. Suppose that $f'(f^{-1}(y)) \neq 0$, for all y. Then, $f^{-1}(y)$ is differentiable and

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$$

Proof: This follows from the functional relationship (*) and the chain rule. We have, for every y,

$$f(f^{-1}(y)) = y$$

Now, differentiating with respect to y (remember, we are wanting the derivative of the function $f^{-1}(y)$ with respect to y) and using the chain rule, we find

$$1 = \frac{d}{dy} \left(f(f^{-1}(y)) \right) = f'(f^{-1}(y)) \cdot (f^{-1})'(y)$$

$$\implies \quad \frac{d}{dy} \left(f^{-1}(y) \right) = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

2 The natural logarithm I We apply Proposition 1.2 to the function $f(x) = \exp(x)$. First, we recall the following facts about $\exp(x)$:

- 1. $\exp(x)$ is strictly increasing. Hence, $\exp(x)$ is one-to-one.
- 2. The domain of $\exp(x)$ is the collection of all real numbers.
- 3. The range of $\exp(x)$ is the collection of all y > 0: indeed, since $\exp(x)$ is differentiable it is continuous. We have also seen that $\exp(x) \to +\infty$ as $x \to +\infty$. Using $\exp(-x) = 1/\exp(x)$ we see that $\exp(x) \to 0$ as $x \to -\infty$. This implies that the range of $\exp(x)$ is the collection of all positive real numbers.

Hence, $\exp(x)$ has an inverse function $\exp^{-1}(x)$.

Remark 2.1. 1. By the above remarks,

- the domain of $\exp^{-1}(y)$ is the collection of all y > 0
- the range of $\exp^{-1}(y)$ is the collection of all real numbers
- 2. We will often write $\exp^{-1}(x)$ instead of $\exp^{-1}(y)$. Remember, it doesn't matter what symbol we use for our input variable as long as we are consistent in a computation.

We have seen that $f(x) = \exp(x)$ is a differentiable function so that $\exp^{-1}(y)$ is also differentiable. We apply Proposition 1.2 to obtain

$$\frac{d}{dy}\exp^{-1}(y) = \frac{1}{f'(\exp^{-1}(y))}$$

Recall that $f'(x) = \exp(x)$. Therefore, $f'(\exp^{-1}(y)) = \exp(\exp^{-1}(y)) = y$, using functional property (*). Hence,

$$\frac{d}{dy}\exp^{-1}(y) = \frac{1}{y} \qquad (**)$$

3 A Fundamental interlude Let f(x) be a function. An **antiderivative** of f(x) is a differentiable function F(x) satisfying

$$\frac{d}{dx}F(x) = f(x).$$

Proposition 3.1. If F(x) and G(x) are antiderivatives of f(x) then

$$F(x) = G(x) + c_s$$

for some constant c. In particular, if F(x) is some antiderivative of f(x) then every antiderivative of f(x) is of the form

F(x) + c, where c is a constant.

Remark 3.2. This Proposition indicates where the constant of integration comes from when we are computing antiderivatives: given a function f(x) there is a family of antiderivatives associated to f(x).

The most important Theorem you saw in Calculus I was an approach to determining the antiderivative of a continuous function.

Fundamental Theorem of Calculus

Let f(x) be a continuous function defined on the closed interval $a \le x \le b$. Then, the function $F(x) = \int_a^x f(u) du$

is an antiderivative of f(x).

4 The natural logarithm II We can restate (**) as follows:

 $\exp^{-1}(x)$ is an antiderivative of $g(x) = \frac{1}{x}$.

We now give a name to a particular antiderivative of $g(x) = \frac{1}{x}$.

Definition 4.1. The natural logarithm function is the function

$$\log(x) = \int_1^x \frac{dt}{t}$$

By the Fundamental Theorem of Calculus, $\log(x)$ is an antiderivative of $\mathfrak{g}(x) = \frac{1}{x}$. Hence, Proposition 3.1 implies that there is a constant c so that

$$\exp^{-1}(x) = \log(x) + c.$$

Since $\exp(0) = 1$, we must have $\exp^{-1}(1) = 0$, giving

$$0 = \exp^{-1}(1) = \log(1) + c = \int_{1}^{1} \frac{dt}{t} + c = c.$$

Hence,

The natural logarithm function $\log(x)$ defined above is the inverse function $\exp^{-1}(x)$, $\log(x) = \exp^{-1}(x)$

Remark 4.2. 1. In Problem Set 4 you will show that the function log(x) just defined as the inverse of exp(x) satisfies the expected *logarithm rules*:

log(xy) = log(x) + log(y), for every x, y > 0.
log(xⁿ) = n log(x), for every x > 0 and natural number n.

2. As the inverse function of $\exp(x)$, the following functional relationships hold:

3. We have claimed that

 $\exp(x) = e^x$, where $e = \exp(1)$ is Euler's number.

In this way we see that $\log(x) = \ln(x)$ is the logarithm base e function.

CHECK YOUR UNDERSTANDING

1. Use the definition $\log(x) = \int_1^x \frac{dt}{t}$ to explain why log is an increasing function: i.e. if 0 < x < y explain why $\log(x) < \log(y)$.

2. Using the fact that $\log(x)$ is the inverse function to $\exp(x)$, complete the following statements:

5 Inverse trigonometric functions In this paragraph we will begin an investigation into the inverse trigonometric functions

CHECK YOUR UNDERSTANDING

1. Let $f(x) = \sin(x)$. Draw the graph of f(x).

2. Explain why f(x) is not one-to-one.

- 3. Determine a domain $A: a \le x \le b$ on which f(x) is one-to-one.
- 4. What is the range B of f(x) when the inputs are restricted to A?
- 5. Explain why an inverse function $f^{-1}(y)$ to f(x), when we restrict to domain A, exists.
- 6. Draw the graph of $f^{-1}(y)$

