Middlebury
College

## November 3 Lecture

## Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 8.2.
- Calculus II, Marsden, Weinstein: Chapter 9.


## Applications of integration III: Surface Area \& Surfaces of Revolution

In this lecture we will investigate further applications of integration. We introduce the Slice Method and determine the surface area and volume of a class of solids known as surfaces of revolution.

1 Surface Area Suppose that $R$ is a nice surface lying along side the interval $[a, b]$ of the $x$-axis. We would like to develop a method to compute the surface area of $R$.

Mathematical workout - Flex those muscles
Let $F$ be the circular frustrum obtained by rotating the line segment $y=x, 1 \leq x \leq 2$, around the $x$-axis.


Let's determine the surface area of $F$. If we cut $F$ along a line and unroll it in the plane we obtain a circular sector having radius $r$ and angle $\theta$ with a concentric sector of radius $r-s$ removed.


1. What are the numerical values of $r_{1}$ and $r_{2}$ in the above figure?
2. What are the numerical values of $r$, $s$ ? (Hint: $r, s$ can be realised as the distance between two points in the plane; which two points?)
3. Recall that, by the definition of radians, $\theta r=2 \pi r_{2}$ (similarly, $\theta s=2 \pi r_{1}$ ). Hence,

$$
\theta=
$$ -.

4. Given that the area of a circular sector having angle $t$ and radius $R$ is $\frac{t}{2 \pi} \pi R^{2}$, show that the area of the frustrum $F$ is $3 \sqrt{2} \pi$.

Area of a general frustrum Let's generalise our investigation above to the general case: let $y=m x+c$ be a line segment lying in the upper half plane defined between $x=a$ and $x=b$. Assume $m \neq 0$. If we rotate this line segment around the $x$-axis we obtain a circular frustrum $F$.


To determine the surface area of $F$ we proceed as above and determine the area of the ring sector below.


Define $p=r-s$. Then,

$$
r_{1}=\square \quad r_{2}=
$$

Since $\theta r=2 \pi r_{2}$ and $\theta s=2 \pi r_{1}$, we have

$$
\theta p=2 \pi\left(r_{2}-r_{1}\right) \quad \Longrightarrow \quad \theta=
$$

$\qquad$

Recall that the length of a straight line segment $y=m x+c$, between $x=x_{1}$ and $x=x_{2}$, is $\left(x_{2}-x_{1}\right) \sqrt{1+m^{2}}$. Hence,

$$
s=\ldots \quad r=\ldots
$$

Finally, the area $A$ of the frustrum $F$ is

$$
A=\frac{\theta}{2 \pi} \pi\left(r^{2}-s^{2}\right)=\frac{\theta}{2} p(r+s)=
$$

## Check your understanding

Let $f(x)=m x+c$. Show that the area $A$ of the frustrum $F$ satisfies

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Remark 1.1. The integral formula just given for the area of a circular frustrum is also valid when $m=0$ i.e. when $F$ is a cylinder having radius $c$ and height $(b-a)$ : recall that the area of a cylinder having radius $c$ and height $h$ is $2 \pi c^{2} h$

2 Surface area of surfaces of revolution In this paragraph we will determine the surface area of the class of surfaces known as surfaces of revolution.

Definition 2.1. Let $f(x)$ be a nonegative function whose derivative is continuous on the interval [a,b] i.e. $f(x) \geq 0$, for all $a \leq x \leq b$. The surface obtained by rotating the graph $y=f(x)$ about the $x$-axis is known as a surface of revolution.

Remark 2.2. If $g(y)$ is a function, defined on the interval $c \leq y \leq d$, then the surface obtained by revolving the graph $x=g(y)$ about the $y$-axis is also known as a surface of revolution. The two definitions are equivalent: one is obtained from the other by reflecting acros the line/plane $y=x$.
Example 2.3. 1. Let $f(x)=m x+c$, and $[a, b]$ be an interval on which $f(x)$ is nonegative. Then, the graph of $f(x)$ is a line segment. The surface of revolution about the $x$-axis is either:
(a) a circular frustrum (similar to the diagram on p. 1 above);
(b) a circular cone;
(c) a cylinder.

Picture
2. Let $r>0$. Consider the function $f(x)=\sqrt{r^{2}-x^{2}}$. Then, the surface of revolution obtained from $f(x)$ is the sphere having radius $r$.
Picture

We can now approximate the surface area of a surface of revolution using a collection of circular frustrums.

## Picture

Let $S$ be a surface of revolution obtained from $f(x), a \leq x \leq b$. Choose a natural number $n$.

1. Subdivide $[a, b]$ into $n$ subintervals having equal length so that the endpoints of each subinterval are

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

2. Define the piecewise linear function $g_{n}(x)$ as follows:

$$
g_{n}(x)=m_{i}\left(x-x_{i}\right)+f\left(x_{i}\right), \quad \text { when } x_{i-1} \leq x \leq x_{i}
$$

Here

$$
m_{i}=
$$

$\qquad$
The piecewise linear function $g_{n}(x)$ provides an approximation to the graph of $f(x)$
3. Then, the surface of revolution $S$ is approximated by a collection of $n$ circular frustrums $F_{1}, \ldots, F_{n}$ as in the above diagram. Moreover,

Surface area of $F_{i}=$ $\qquad$
4. Hence, the surface area of $S$ is obtained as the limit

$$
\text { Surface area of } S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \int_{x_{i-1}}^{x_{i}} \sqrt{1+\left(g_{n}^{\prime}(x)\right)^{2}} g_{n}(x) d x
$$

$$
=
$$

Example 2.4. 1. The surface area $A$ of the surface of revolution about the $x$-axis obtained from $f(x)=2 \sqrt{x}$ when $1 \leq x \leq 2$ is

$$
A=2 \pi \int_{1}^{2} \sqrt{1+\frac{1}{x}} 2 \sqrt{x} d x=4 \pi \int_{1}^{2} \sqrt{x+1} d x=4 \pi\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{1}^{2}=\frac{8 \pi}{3}(\sqrt{27}-\sqrt{8})
$$

2. Let $f(x)=\sqrt{r^{2}-x^{2}},-r \leq x \leq r$. Then, the surface of revolution obtained from $f(x)$ is the sphere having radius $r$. Let's compute its surface area $A$. First we compute

$$
f^{\prime}(x)=
$$

Then, we have

$$
\begin{aligned}
& A=2 \pi \int_{-r}^{r} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} f(x) d x \\
&= \\
&= \\
&= \\
&
\end{aligned}
$$

Mathematical workout - Flex Those muscles
Before the next Lecture please attempt the following problem. One student in class will be randomly chosen (your name will be pulled from The Jar) to present your solution. If you are unable to solve the problem then don't worry! We will work through it together and you will receive help at those points you have found difficult. It's important for you to make a good attempt at these problems even if you are unable to solve them.

1. Determine the surface area of the surface of revolution about the $x$-axis obtained from the graph $y=\sqrt{x+1}$ when $0 \leq x \leq 2$. Draw sketch of this surface.
2. Determine the surface area of the surface of revolution about the $x$-axis obtained from the graph $y=\cos (x)$ when $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Draw a sketch of this surface.
3. Determine the surface area of the surface of revolution about the $y$-axis (careful!) obtained from the graph of $f(x)=x^{1 / 3}$ when $1 \leq x \leq 3$. Draw a sketch of this surface.
4. Challenge! Use the slice method to determine a formula for the volume of the surface of revolution about the $x$-axis obtained from $f(x)$, when $a \leq x \leq b$.
