
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

November 30 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Power Series, Integral Calculus, Khan Academy

Power Series

In this lecture we will investigate how to use series to solve differential equations. This will lead
to the notion of a power series representation of a function.

1 An impossible integral? Recall that the antiderivative problem∫
exp(−x2)dx

does not admit an elementary function solution. However, the Fundamental Theorem of Calculus
states that the integral function

f(x) =

∫ x

0

exp(−s2)ds

is an antiderivative of exp(−x2), which means

d

dx
f(x) = exp(−x2).

This leads to a basic question:

Problem: How can we represent the function f(x) in a way that allows us
to understand its properties more clearly (i.e. not as an integral function!)?

Recall that

exp(x) = 1 +
∞∑
n=1

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . .

=⇒ exp(−x2) = 1 +
∞∑
n=1

(−x2)n

n!
= (∗)

A reasonable guess, therefore, may be to represent f(x) as an infinite series, in a similar way to how
we defined exp(x). We give such expressions a special name.

Definition 1.1. A power series is a series of the form∑
n≥0

cn(x− c)n

where c0, c1, c2, . . . and c are constant, and x is a variable. We call c the centre of the power series.
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Remark 1.2. Observe that a power series is completely determined by its centre c and the coefficients
c0, c1, c2, c3, . . .: any two power series possessing the same centre and coefficients are the same power
series.

Mathematical workout - flex those muscles!
Let’s f(x) be an antiderivative of exp(−x2) satisfying f(0) = 1. We are going to try to represent

f(x) as a power series centred at 0,

f(x) =
∑
n≥0

anx
n = a0 + a1x + a2x

2 + a3x
3 + . . .

1. Use the condition f(0) = 1 to determine a0.

2. Let’s assume that we can differentiate the power series term-by-term, so that

d

dx
f(x) =

d

dx

(
a0 + a1x + a2x

2 + a3x
3 + . . .

)
= a1 + 2a2x + 3a3x

2 + 4a4x
3 + . . .

Use the power series expansion of exp(−x2) above to determine the following coefficients:

a1 = a2 = a3 = a6 = a7 =

3. Spot the pattern! Write down the general expression for an:

an =


, n even,

, n = 2k + 1 odd.

4. Use the previous calculations to complete the following power series representation for f(x),
the antiderivative of exp(−x2) satisfying f(0) = 1:

f(x) = +
∞∑
k=0

x2k+1
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2 Convergence of power series The power series introduced above is a candidate for an

antiderivative of exp(−x2). However, there are some issues we must address:

1. for which x is the power series f(x) a well-defined function? We must consider this problem
because f(x) is defined using a series, and we need to check for which x is the series convergent.

2. is it true that we can differentiate a power series term-by-term? If so, then we can be sure
that the power series representation of f(x) is a valid solution to the antiderivative problem∫

exp(−x2)dx (wherever it is defined).

We will now focus on the first problem above. Recall the Ratio Test:

Let
∑

bn be a series such that bn 6= 0, for every n. Let L = limn→∞

∣∣∣ bn+1

bn

∣∣∣.
Then,

•
∑

bn converges if L < 1,

•
∑

bn diverges if L > 1,

• if L = 1 then no conclusion can be made and further investigation is
required.

You’ve shown above that

f(x) = +
∞∑
k=0

x2k+1 (∗∗)

Letting y = x2, we can rewrite the power series

+ x

(
∞∑
k=0

yk

)

In particular, this series converges if and only if the series

∞∑
k=0

(−1)k

k!(2k + 1)
yk (∗ ∗ ∗)

converges. Using the Ratio Test, for fixed y 6= 0, we determine∣∣∣∣ (−1)k+1yk+1

(k + 1)!(2k + 3)

k!(2k + 1)

(−1)kyk

∣∣∣∣ =
|y|(2k + 1)

(k + 1)(2k + 3)
→ 0 as k →∞

Of course, the series (∗∗∗) is convergent when y = 0. Hence, for any y the series (∗∗∗) is convergent,
which implies that the series (∗∗) is convergent, for any x.

The function

f(x) = +
∞∑
k=0

x2k+1

is defined for every x.
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Remark 2.1. This is not so surprising due to how we defined f(x) in the first place: as an an-
tiderivative of exp(−x2)

Check your understanding
Suppose you are given the power series

∞∑
n=0

cn(x− c)n

1. Let R = limn→∞

∣∣∣ cn
cn+1

∣∣∣. By considering the Ratio Test applied to the power series, explain why

the power series

(a) converges if |x− c| < R,

(b) diverges if |x− c| > R,

(c) further investigation is required if |x− c| = R.

2. Complete the following statement:

Let R = limn→∞

∣∣∣ cn
cn+1

∣∣∣. Then, the power series
∑∞

n=1 cn(x− c)n is

convergent if

< x <

This investigation leads us to the following important definition.

Definition 2.2. Let
∑∞

n=0 cn(x− c)n be a power series. Define the radius of convergence to be

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣
Here, R is either a nonegative real number or equal to +∞. In this latter case we say that the radius
of convergence is infinite.

We have the following immediate consequence:

Let R = limn→∞

∣∣∣ cn
cn+1

∣∣∣ be the radius of convergence of the power

series
∑∞

n=1 cn(x− c)n. Then, the power series

• converges if |x− c| < R, (i.e. c−R < x < c + R)

• diverges if |x− c| > R, (i.e. x < c−R or x > c + R)

• if |x− c| = R then further investigation is required.
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Example 2.3. 1. Consider the exponential series

exp(x) = 1 +
∞∑
n=1

xn

n!

This is a power series centred at c = 0, and cn = 1
n!

, for n = 0, 1, 2, 3, 4, . . .. The radius of
convergence is

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!

n!

∣∣∣∣ = lim
n→∞

(n + 1) = +∞

Hence, we recover the fact already established that exp(x) is well-defined for all x.

2. Consider the power series
∞∑
n=1

(x− 1)n

n

This is a power series centred at c = 1 and cn = 1
n
, for n = 1, 2, 3, . . .. The radius of convergence

is

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

n + 1

n
= 1

Hence, the power series

(a) converges when i.e. when , and

(b) diverges when i.e. when .

If then or and we have two separate cases to consider
for convergence.

• : In this case the power series is

This is by .

• : In this case the power series is

This series is by

Hence, the power series
∑∞

n=1
(x−1)n

n
is convergent when , and divergent other-

wise.
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3. Consider the power series

∞∑
n=0

n!(1− x)n =
∞∑
n=0

n!(−1)n(x− 1)n

We have coefficients cn = (−1)nn!. The centre of the power series is c = 1 and the radius of
convergence is

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)nn!

(−1)n+1(n + 1)!

∣∣∣∣ = lim
n→∞

1

n + 1
= 0.

Hence, the radius of convergence is R = 0. Thus, the series converges at x = 1 and diverges for
x 6= 1.

Check your understanding
Consider the power series

∞∑
n=0

(x + 1)n

3n(n + 1)

Determine

(a) the centre c,

(b) the radius of convergence R,

(c) the largest interval on which the power series converges.
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Mathematical workout - flex those muscles
Before the next Lecture please attempt the following problems. One student in class will be

randomly chosen (your name will be pulled from The Jar) to present your solution. If you are unable
to solve the problem then don’t worry ! We will work through it together and you will receive help
at those points you have found difficult. It’s important for you to make a good attempt at these
problems even if you are unable to solve them.

Determine the centre c, radius of convergence R, and the largest interval on which the power series
converges.

1.
∑∞

n=0
(x−3)n
n2+1

2.
∑∞

n=0
(−x)2n
(2n)!

3.
∑∞

n=0
(4−2x)n
2n+1
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