Middlebury
College

November 20 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 9.5.
- Calculus II, Marsden, Weinstein: Chapter 8.6.

Differential Equations IV

1 Linear First-Order Equations In this paragraph we introduce a substantially more general class of first-order differential equations, known as linear first-order differential equations.

Linear First-Order Equations

A linear first-order differential equation is a differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{*}
\end{equation*}
$$

where $P(x), Q(x)$ are continuous functions defined on some common interval.

Check your understanding

Which of the the following equations are linear first-order equations?
$(A): ; \frac{d y}{d x}=x y^{2}+x$,
$(B): \frac{d y}{d x}=g(x) h(y)$,
$(C): \quad \frac{d y}{d x}=k y$,
$(D): \quad x^{2} y^{\prime}+x y=1$

Let's consider how we may solve a linear first-order equation. We use the following nifty trick: we want to solve the general linear first-order equation (*). Define

$$
z=y \exp \left(\int P(x) d x\right)
$$

Then, $z=z(x)$ and

$$
\begin{aligned}
& \frac{d z}{d x}= \\
&= \\
&= \\
&
\end{aligned}
$$

Hence, we find

$$
\begin{aligned}
& z= \\
& \Rightarrow y= \\
& \hline
\end{aligned}
$$

In summary,

Method for Solving Linear First-Order Equations

(1) Compute an antiderivative of $P(x)$ i.e. determine $\int P(x) d x$ (no constant of integration required)
(2) Let $I(x)=\exp \left(\int P(x) d x\right)$. Multiply both sides of $(*)$ by $I(x)$.
(3) In this way $(*)$ becomes

$$
\frac{d}{d x}(I(x) y)=Q(x) I(x) \quad(* * *)
$$

(4) Integrate both sides of $(* * *)$
(5) Rearrange for y.

Definition 1.1. Given a linear first-order equation

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

we define the integrating factor to be

$$
I(x)=\exp \left(\int P(x) d x\right)
$$

Here $\int P(x) d x$ is some antiderivative of $P(x)$ (no constant of integration required).
Example 1.2. 1. Consider the linear first-order equation

$$
\frac{d y}{d x}+3 x^{2} y=6 x^{2}
$$

Here $P(x)=$ \qquad , $Q(x)=$ \qquad . Then, we can determine an antiderivative

$$
\int P(x) d x=
$$

and the integrating factor is $I(x)=$ \qquad .

Multiplying both sides of the differential equation by $I(x)$ gives
\qquad
You can (and should) check that

$$
\frac{d}{d x}(\square)=
$$

Integrating both sides gives

$$
工=
$$

Rearranging, we obtain the general solution

$$
y=
$$

2. Consider the differential equation

$$
x^{2} y^{\prime}+x y=1, \quad x>0
$$

This can be put into the form of a linear first-order equation by dividing through by x^{2} :

$$
y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}}
$$

Here $P(x)=\frac{1}{x}, Q(x)=\frac{1}{x^{2}}$. Then, the integrating factor is

$$
I(x)=\exp \left(\int P(x) d x\right)=\exp (\log (x))=x
$$

Here we have used that $x>0$ to ensure that $\log (x)$ is well-defined. Hence, multiplying (\bullet) by $I(x)$ gives

$$
x y^{\prime}+y=\frac{1}{x} \quad \text { or } \quad(x y)^{\prime}=\frac{1}{x}
$$

Integrating both sides we find

$$
x y=\int \frac{1}{x} d x=\log (x)+C \Rightarrow y=\frac{\log (x)+C}{x}
$$

Given the initial-value $y(1)=2$, we compute

$$
2=y(1)=\frac{\log (1)+C}{1}=C
$$

Therefore, the solution to (\bullet) satisfying $y(1)=2$ is

$$
y=\frac{\log (x)+2}{x}
$$

Check your understanding

1. Solve the initial-value problem

$$
y^{\prime}=x-y, \quad y(0)=3
$$

2. Newton's Second Law states that the force acting upon an object is equal to $m a$, where a is the acceleration of the body and m is its mass. It is a fact that $a=\frac{d v}{d t}$, where $v=v(t)$ is the velocity of the object at time t.
A falling object is being acted upon by the downward force of gravity ($=m g$, where g is the gravitational constant) and an opposite force of air resistance ($=k v$, where k is a constant measuring air friction). Hence, using Newton's Second Law, the veolicty of a falling object in a resisted medium is described by the differential equation

$$
m \frac{d v}{d t}=m g-k v
$$

If an object is released from rest, determine its velocity $v(t)$. What happens as $t \rightarrow \infty$?

Mathematical workout - Flex those muscles
Before the next Lecture please attempt the following problems. One student in class will be randomly chosen (your name will be pulled from The Jar) to present your solution. If you are unable to solve the problem then don't worry! We will work through it together and you will receive help at those points you have found difficult. It's important for you to make a good attempt at these problems even if you are unable to solve them.

Determine a solution to the following

1. Solve the intial-value problem

$$
\frac{d y}{d x}=y \cos (x)+2 \cos (x), \quad y(0)=0
$$

2. Determine the general solution

$$
y^{\prime}=x^{3} y-x^{3}
$$

3. Solve the initial-value problem

$$
x y^{\prime}=\exp (x)-y, \quad y(1)=0
$$

