Middlebury
College

November 15 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 9.1, 9.3.
- Calculus II, Marsden, Weinstein: Chapter 8.2.

Differential Equations II

We complete our discussion of growth and decay differential equations.

1 Solutions of the growth \& decay equations Recall the

Growth \& Decay Equation (GDE)

Let $P(t)$ be the number of individuals in a population of interest at time t. Then, the basic growth/decay equation governing $P(t)$ is

$$
\frac{d P}{d t}=k P
$$

- If $k>0$ then $P(t)$ is growing.
- If $k<0$ then $P(t)$ is decaying.

This equation provides a basic model for quantities - for example, radioactive substances, bank balances, temperature of objects - that grow/decay continuously at a rate proportional to their current value.

Basic Assumption: We will assume that $P(t) \neq 0$, for all t.

Remark 1.1. The growth \& decay equation given above describes the growth/decay of populations, in the absence of external factors. As such, this equation is not a completely accurate model of most growth/decay situations.

For example, suppose that a population initially grows at a constant rate proportional to $P(t)$, but begins to decay once $P(t)$ passes a certain threshold M (the carrying capacity of $P(t)$)

- $\frac{d P}{d t}=k P$ if P is small.
- $\frac{d P}{d t}<0$ if $P>M$ (i.e. P decreases once it exceeds M).

A simple expression that incorporates both assumptions is

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right), \quad k>0
$$

Indeed, if P is small compared to M then P / M is small, while if $P>M$ then $1-\frac{P}{M}<0$ so that $\frac{d P}{d t}<0$. The differential equation described above is known as the logistic differential equation (LDE).

More generally, the modification of the GDE by additional factors is called damping.
In order to solve the GDE - i.e. to find all solutions $P(t)$ satisfying the given GDE - we recognise that it looks like a piece of an antiderivative problem whose solution is obtained by the method of inverse substitution: by our Basic Assumption, we may rearrange the GDE to obtain

$$
\frac{1}{P} \cdot \frac{d P}{d t}=k
$$

Writing $P=P(t)$ as a function of t, the method of inverse substitution gives
\qquad
$=$.

Evaluating the two antiderivative problems above gives
\qquad $=$ \qquad
and applying exp to both sides gives

$$
P(t)=
$$

\qquad
Observe that we can determine

Check your understanding

Let $P(t), Q(t)$ be two solutions to the GDE

$$
\begin{equation*}
\frac{d P}{d t}=-2 P \tag{*}
\end{equation*}
$$

Assume that both functions $P(t), Q(t)$ are not identically zero.

1. Fill in the blanks:

$$
P^{\prime}(t)=\square \quad Q^{\prime}(t)=
$$

2. Define $R(t)=\frac{P(t)}{Q(t)}$. Use the Chain Rule and $(*)$ to show that $R^{\prime}(t)=0$.
3. Use the previous problem to explain why there is a constant a satisfying $P(t)=a Q(t)$, for all t.
4. Suppose that $P(0)=Q(0) \neq 0$. Explain why this condition implies $P(t)=Q(t)$, for all t.
5.

Let C_{0} be a real number. There \qquad solution(s) $P(t)$ of the GDE

$$
\frac{d P}{d t}=k P
$$

satisfying $P(0)=C_{0}$.

Circle the phrase that completes the statement above.

does not exist any exists at least two distinct is a unique

Natural growth and decay

The general solution to the Growth \& Decay Equation

$$
\frac{d P}{d t}=k P, \quad k \text { constant }
$$

is given by

$$
P(t)=C \exp (k t),
$$

for some constant C. Moreover, given any real number C_{0} there exists

$$
\ldots \text { solution satisfying } P(0)=C_{0}
$$

The relationship between the sign of k and the behaviour of $P(t)$ is shown below.

Example 1.2 (Newton's Law of Cooling). Newton's Law of Cooling states the following:

The instantaneous rate of change of the temperature of an object is proportional to the difference between its own temperature and the ambient temperature of its surroundings.

Let
$T(t)=$ temperature of object at time t.
$T(0)=T_{0}=$ initial temperature of the object.
$T_{a}=$ ambient temperature of surrounding.
Newton's Law of Cooling states that there is a constant k such that

$$
\frac{d T}{d t}=k\left(T-T_{a}\right)
$$

Define
$y(t)=T(t)-T_{a}=$ temperature difference between object and surroundings at time t..
$y(0)=T_{0}-T_{a}=$ initial temperature difference at $t=0$.
Then, since T_{a} is a constant, we can rewrite the above differential equation as

$$
\frac{d y}{d t}=k y
$$

Hence, the rate at which an object cools relative to its surrounding is governed by a Growth \& Decay Equation. In particular, its general solution is

$$
y(t)=y_{0} \exp (k t)
$$

Hence, the temperature of the object is

$$
T(t)=y(t)+T_{a}=\left(T_{0}-T_{a}\right) \exp (k t)+T_{a}
$$

2 Separable equations The Growth \& Decay Equation is a particular example of a class of differential equations known as separable equations.

If a differential equation can be written in the form

$$
\begin{equation*}
\frac{d y}{d x}=g(x) h(y) \tag{**}
\end{equation*}
$$

where the right hand side factors as the product of a function of x and a function of y then it is called a separable equation.

Check your understanding

Which of the following are examples of separable equations?
$(A): \frac{d y}{d x}=\frac{-3 x}{y+y x^{2}}$,
$(B): \frac{d z}{d x}=z^{2}+2 z x+x^{2}$,
$(C): \frac{d P}{d t}=k P$,
$(D): y y^{\prime}=\cos (2 x)$

The approach to solving separable equations - i.e. determining all solutions $y=y(x)$ satisfying $(* *)$ - is guided by our solution to the GDE: if we rearrange $(* *)$ to get

$$
\frac{1}{h(y)} \cdot \frac{d y}{d x}=g(x)
$$

then the method of inverse substitution gives

$$
\int \frac{1}{h(y)} d y=\int g(x) d x+C
$$

Example 2.1. 1. Consider the separable equation

$$
\frac{d y}{d x}=y^{2}
$$

Here $h(y)=y^{2}$ and $g(x)=1$. Then, we find

$$
-\frac{1}{y}=\int \frac{1}{y^{2}} d y=\int d x=x+C
$$

so that

$$
y=\frac{1}{-C-x}
$$

2. Consider the separable equation

$$
\frac{d y}{d x}=\frac{-3 x}{y+y x^{2}}
$$

Here $g(x)=\frac{-3 x}{1+x^{2}}$ and $h(y)=\frac{1}{y}$. Then, we find

$$
\frac{y^{2}}{2}=\int y d y=\int \frac{-3 x}{1+x^{2}} d x=-\frac{3}{2} \log \left(1+x^{2}\right)+C
$$

If we are looking for the solution satisfying $y=2$ when $x=0$, then we must have

$$
\frac{4}{2}=-\frac{3}{2} \log (1+0)+C \quad \Longrightarrow \quad C=2
$$

Therefore, y must satisfy

$$
y^{2}=-3 \log \left(1+x^{2}\right)+4
$$

There are two possible choices for y as a function of x, given by a choice of square root. Since we require y is positive nearby to $x=0$ (i.e. y is near to 2 when x is near to 0) then we choose the positive square root and

$$
y=\sqrt{4-3 \log \left(1+x^{2}\right)}
$$

Observe that $y=y(x)$ is only defined whenever x satisfies

$$
\frac{4}{3} \geq \log \left(1+x^{2}\right) \quad \Leftrightarrow \quad e^{4 / 3} \geq 1+x^{2} \quad \Leftrightarrow \quad 1-e^{4 / 3} \leq x \leq e^{4 / 3}-1
$$

Mathematical workout - Flex Those muscles
Before the next Lecture please attempt the following problems. One student in class will be randomly chosen (your name will be pulled from The Jar) to present your solution. If you are unable to solve the problem then don't worry! We will work through it together and you will receive help at those points you have found difficult. It's important for you to make a good attempt at these problems even if you are unable to solve them.

Determine a solution to the following

1. Solve the GDE and sketch the graph of the unique solution.

$$
\frac{d x}{d t}-3 x=0, \quad x(0)=1
$$

2. Solve the equation for $f(t)$ and sketch its graph.

$$
f^{\prime}(t)+2 f(t)=0, \quad f(0)=1
$$

3. Solve the separable differential equation

$$
y \frac{d y}{d x}=x, \quad y(0)=1 .
$$

