
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

December 7 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.10, 11.11
- Power Series, Integral Calculus, Khan Academy

Taylor Series II

In this lecture we conclude our discussion of power and Taylor series of infinitely differentiable
functions. We will see applications of Taylor polynomials to approximate functions.

1 Taylor Series Let f(x) be an infinitely differentiable function. If f(x) is the limit of its Taylor
series (centred at c) then f(x) = limn→∞ Tn(x). Let

Rn(x) = f(x)− Tn(x),

the remainder of the Taylor series. We have the following observation:

If limn→∞Rn(x) = 0 whenever |x− c| < R then limn→∞ Tn(x) = f(x) on

the interval |x− c| < R.

The following result provides us with a tool to determine the behaviour of Rn(x) as n→∞.

Taylor’s Theorem/Inequality

If |f (n+1)(x)| ≤M for |x− c| ≤ d then

|Rn(x)| ≤ M

(n+ 1)!
|x− c|n+1 for |x− c| ≤ d

In particular, whenever |x− c| ≤ d we have

|Rn(x)| ≤ Mdn+1

(n+ 1)!

If we can find a constant M and natural number N with the property that

|f (n+1)(x)| ≤M, for any n ≥ N and |x− c| ≤ d

then lim |Rn(x)| = 0. Hence, in this situation, f(x) equals its Taylor series on the interval
[c− d, c+ d].

1



Reminder: For any real number c > 0, limn→∞
cn

n!
= 0.

Example 1.1. Let f(x) = sin(x). Then, since any derivative of f(x) is either equal to ± sin(x) or
± cos(x), we have

|f (n)(x)| ≤ 1, for any n = 0, 1, 2, 3, . . ., and any x.

Take, for example, d = 10 (this is an arbitrary choice). Then, for any n, we have

|f (n+1)(x)| ≤ 1 whenever |x| ≤ 10.

Hence, Taylor’s Inequality implies that

|Rn(x)| ≤ |x|n+1

(n+ 1)!
≤ 10n+1

(n+ 1)!
for |x| ≤ 10 and any n.

This means
≤ Rn(x) ≤ for |x| ≤ 10.

Check your understanding
Complete the following statement:

By the Theorem, we conclude that limn→∞Rn(x) = ,
whenever |x| ≤ 10.

Hence, for any x in the interval we have

sin(x) =

Since d was arbitrary we obtain the following series representation of sin(x)

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . . =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
for any x.

A similar argument shows that

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . =

∞∑
k=0

(−1)kx2k

(2k)!
for any x.
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Check your understanding

1. Show that the series

1− 1

3!
+

1

5!
− 1

7!
+ . . .

is convergent and determine its limit.

2. Show that the series

1− π2

2!
+
π4

4!
− π6

6!
+ . . .

is convergent and determine its limit.

3. Let f(x) = exp(x) and d > 0. Determine a constant K such that |f (n)(x)| ≤ K, for any n and
any |x| ≤ d.

4. Using Taylor’s Inequality, deduce that the Taylor series of f(x) = exp(x) centred at c = 0
equals f(x), for all x.
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