Calculus I Review

It will be assumed that you have some exposure to and practice with the following topics.

1. The notion of the limit $\lim _{x \rightarrow a} f(x)$ of a real-valued function $f(x)$ as x tends towards a, and the definition of a continuous function in terms of limits.
2. The following Theorems: let $f(x), a \leq x \leq b$, be a continuous function.
(a) (Min/MAX THEOREM) There exists real numbers m and M such that $m \leq f(x) \leq$ M. Moreover, there exists $a \leq y \leq b$ and $a \leq z \leq b$ such that $f(y)=m$ and $f(z)=M$.
(b) (intermediate value theorem) Suppose that $f(a)=c, f(b)=d$ so that $c<d$ and let $c<e<d$. Then, there exists u with $a<u<b$ such that $f(u)=e$.
3. The definition of the derivative of $f(x)$ at $x=a$ in terms of limits

$$
f^{\prime}(a) \stackrel{\operatorname{def}}{=} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The notation $f^{\prime}, \frac{d}{d x} f(x), \frac{d}{d x} f, \frac{d f}{d x}$, and the interpretation of the derivative as the rate of change of $f(x)$ near to $x=a$.
4. The following theorems on differentiation: let $f(x), g(x)$ be functions, C a constant.
(a) (Linearity) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x), \quad(C f)^{\prime}(x)=C f^{\prime}(x)$
(b) (PRODUCT RULE) $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
(c) (QUOTIENT RULE) $\left(\frac{f}{g}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{f(x)^{2}}$
(d) (Chain RULE) $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
5. The following elementary derivatives:
(a) Let $n \neq 0$ be an integer. Then, $\frac{d}{d x}\left(x^{n}\right)=x^{n-1}$
(b) $\frac{d}{d x} \cos (x)=-\sin (x), \quad \frac{d}{d x} \sin (x)=\cos (x)$
6. (antiderivative problem) Given $f(x)$, does there exists an antiderivative $F(x)$ such that $F^{\prime}(x)=f(x)$? An antiderivative $F(x)$ of $f(x)$ is frequently called an indefinite integral (of $f(x)$), denoted $\int f(x) d x$, or simply $\int f$.
7. Determining antiderivatives of certain elementary functions.
8. The definition of the definite, or Riemann, integral $\int_{a}^{b} f(x) d x$ using Riemann sums.
9. (Fundamental Theorem of Calculus) Let $f(x), a \leq x \leq b$, be continuous.
(a) The function

$$
F(x)=\int_{a}^{x} f(u) d u, \quad a \leq x \leq b,
$$

is an antiderivative of $f(x)$.
(b) The definite integral $\int_{a}^{b} f(x) d x$ can be evaluated using an antiderivative $F(x)$ of $f(x)$: namely,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

