CHAPTER 3
Euler and Infinite Series

When the seventeenth century dawned, infinite series were little understood and
infrequently encountered. By the century’s end, a vast body of specific examples
and general theorems had been developed. Jakob Bernoulli's Tractatus de
seriebus infinitis of 1689, mentioned in the previous chapter, presented a state-
of-the-art account of this explosion of knowledge. It was an exciting time, and
mathematicians had reason to be proud of their progress over the past hundred
years.

Such achievements notwithstanding, there were major problems that de-
fied solution and thus served as conspicuous challenges to scholars of the
coming century. Euler, of course, was such a scholar, and in one famous case—
the so-called “Basel problem”—he rose to the challenge in spectacular fashion.
In this chapter we tell the story of his mathematical triumph.

Prologue

Jakob Bernoulli loved infinite series. Not only did he prove the divergence of
the harmonic series, but he also knew exact sums for a number of convergent
ones. Simplest among these was the the summation formula for the infinite
geometric series:

a
1—r

atar+ar’+--tak+.-.=

provided —1 < r < 1.

Other, more sophisticated examples could be summed as well. For in-
stance, consider 1 + § + 1 + L + 15+ + + +, where the kth denominator is the
so-called kth triangular number, k(k + 1)/2. A seventeenth-century evaluation
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of this series was short and sweet;

LIS I
3 6 10 15

—-2_1_+l+_1.+1+_}_+...
2 6 12 20 30
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because, within the second set of square brackets, all terms but the first cancel
one another. Students of calculus should recognize

I
pr kk +1)/2
as a well-known “telescoping series.”

Less familiar is Jakob Bernoulli’s summation of the infinite series

a a+c a+2¢c a+3c
-+ + + + e
b bd bd? bd? !

whose numerators form an arithmetic progression

a,a+c,a+2c,a+3c,...
and whose corresponding denominators form a geometric progression
b,bd,bd* bd’,....

Forinstance,ifa = 1,b = 3,¢c = 5,andd = 7, we have

1,6 11 16 21 2%
3721 147 1029 7203 50421 ’

whose exact sum is far from obvious.
In Section X1V of the Tractatus, Jakob evaluated this series.! His insight
was to decompose it as follows:

a at+c a+2¢c a+3c
- + I
b+ bd bd? + bd3

G dr )

1Jakob Bernoulli, p 247
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Each infinite series in parentheses is geometric and, provided d > 1, conver-

gent. Replacing these by their sums gives:
a atc at+2c a+i3c

had + R
b+ bd bd? + bd3 +
_ a/b + c/bd c/bd? L.
1—-1/d 1-1/d 1—-1/d
ad c 1 1 1
= + oo e
bd —b @ bd—-1) {1 i &P ]
_ _ad + ¢ | _ ad? — ad + cd
bd—b bd-1)|1~-1/d bd? —2bd + b’

because the series in square brackets is geometric as well.
So, for the example above, we have:

1,6 10 16 21 26 71
3721 147 1029 7203 © 50421 108°

And there were others. For instance, Jakob found that

and

(which remain good problems to this day).? With each success, he must have

felt ever more confident of his powers.
Eventually he turned his attention to series of the form

21bid., pp. 248-249.
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which are today called “p-series” for obvious reasons. If p = 1, we have the
(divergent) harmonic series which Jakob had handled perfectly. But what if
p = 27 What is the exact sum of the series

I 1 1 ]
-t -t
: 4 9 16 +k2+

The problem was not a new one. Decades earlier, Pietro Mengoli had
raised the question and found himself unable to determine this sum. The same
could be said for Leibniz, inventor of calculus and master of so many infinite
series. Now it was Jakob Bernoulli’s turn. One imagines his growing frustration
with a series that, on the face of it, seemed no more difficult than those whose
secrets he had previously uncovered.

This is not to say that progress was nonexistent, By employing the in-
equality 2k* = k(k + 1), Bernoulli recognized that

11
k2 k(k+ 1)/2

and thus

| l 1 | . I l
1+Z+-§+R—+---+P~+--- = 1+§+€+T6+~- +m+---,
where this latter (telescoping) series converges to 2, as seen above. Because
the larger series has a finite sum, Bernoulli reasoned that the smaller one
must as well. More explicitly, it was clear that Y o=y 1/k* =< 2. And because
1/kP < 1/k* for all p = 2, the same argument established that 3 "_ 1/k”
converges for p = 3,4,5,....

This stands as an early—and nicely done—example of what is now called
the “comparison test” for series convergence. For all of its cleverness, however,
it did not provide an exact sum for the series in question. On this more difficult
matter, Jakob admitted defeat. Writing from Basel, he included in the Tractatus
his plea for help:

If anyone finds and communicates to us that which thus far has eluded
our efforts, great will be our gratitude.?

With these words, the mathematical community was handed a formal, and
formidable, challenge. In the end, the “Basel problem” would outlive Jakob
Bernoulli and the century that spawned it. Only in the eighteenth century did
this great problem meet its match.

31bid., p. 254.
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Enter Euler

Itis not clear exactly when Euler first considered the matter, but by 1731, at the
age of 24, he was hard at work upon it. It occurred to him, as it had to others
before, that a reasonable first step would be to approximate the infinite series
2_t=1 1/k* by adding the first few—or few hundred—terms. Unfortunately,
because this series converges so slowly, such frontal attacks are not particularly
illuminating. For instance,

1 1 1
-+t —— =], :
1 + i35 1 1.54977 (ten terms)
1 | l
ST R T e O .
1 its 10000 1.63498 (one hundred terms);

and

I 1
I+Z+§+"'+ e
We now know that, in spite of its prodigious number of terms, this last result is
correct to only rwo decimal places. Other than the comforting fact that all these
partial sums remain below 2.000 (as Bernoulli’s comparison test had proved),
direct numerical approximation is of little value.

Then, in a 1731 paper, the young Euler found a way to improve dramat-
ically such numerical approximations. His discovery, remarkable in its vision
and fearless in its manipulation of symbols, was truly ingenious.*

Euler’s trick was to evaluate the (improper) integral

1/2 _
/ =/ _In(l =1 dt
0

=~ 1.64393(one thousand terms).

t

in two different ways. On the one hand, he replaced In(] — f) by its series
expansion (see Chapter 2) and integrated termwise to get:

1_/1/2_—1—12/2—13/3”14/4""'
0

!

1/2 t )'2 f3
= ot b
/ (1 selal )dt

172

dt

I
=t b b e
T

0

*Euler, Opera Omnia, Ser. 1, Vol 14, pp 39-41.
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1, 1/22 122 1/2¢
sttt T (3.1)

On the other hand, he substituted z = 1 — ¢ to transform the original
integral as follows:

72 In(1 — 1) /2 Ing
I= - dt = d
/o t /1 1-2%¢

1/2
=/ AQ+z+2+2+--)Inzdz
1
1/2 1/2 1/2 1/2
=/ lnzdz+/ zlnzdz+/ Zlnzdz + z31nzdz+-~,
1 1 1 i

because 1 /(1 — z) is the sum of the geometric series | + z+ 22+ 23+« |
Integration by parts implies that

1/2 Z"ﬂ 2t
/, e A

1/2

k]

1

and so this last expression becomes:

2 2 3 3
z Z b4 Z
- - -
I ={lnz z)+(21nz )+(3]nz 9)

2 4 1/2
+(=Imz— =) +---
(4 e 16) |
2 3 4 2 3 4 172
Z b4 Z 2 Z Z
=1 ++ 4+ —lz+ S+ + 2 4+
"Z[Z 2 373 } (Z 479716 ),
2 4 1/2
2 7z
=Inz|—In(l —2)| — LI
lnz[ In(1 z)] z+4+9 T )1

_ INTE /1, 1722 1728 12
- [I“(EH (§+ i A T )
+ [In1][In0] + Z ;gi
k=1

Euler simply discarded [In 1]{In 0], although the modern reader might prefer to
invoke I"Hopital’s Rule to verify that lim,_, - {In z][In(1 — 2)] = 0. In any case,
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he arnved at:

2 3
I=—[n2p - (% + 122 + 1{)2 + 1/24 ) Zkz. (3.2)

Then he equated the expressions for 7 in (3.1) and (3.2) and solved;

1 1, 1/22 1/ 128
= =2(=+ +
— k2 2(2 4 5 " 16

+) + [In 2]

1
= § :—-— + [In 2J>.
29k~ |
s k22

By this time the reader must have noticed a number of symbolic ma-
nipulations that require careful handling. Euler paid no heed to such matters
as the existence of improper integrals or the termwise integration of infinite
series. Nevertheless, his fusion of the log series, the geometric series, and inte-
gration by parts—all with the object of reaching an alternative expression for
2 k=1 1 /k*—was a masterstroke. What made this effort worthwhile was that
the resulting formula

> 1

§ :—————-—+[1n2]2
272k—1

k22

consists of a rapidly converging series (thanks to the 2¢~! term in the de-
nominator) along with the number [In2]?, which Euler knew to dozens of
decimal places. Using only fourteen terms of this new formula, one finds that
Z;f;l 1/k? = 1.644934, an answer correct to six places. This is far more ac-
curate than summing a thousand terms of the original series. Euler’s ingenuity
had paid off.

Or had it? In spite of this vastly improved estimate, it was still just an
estimate. Jakob Bernoulli, one remembers, had challenged the world to find the
exact sum. In this sense, the problem seemed as far from resolution as ever.

But the end was in sight. Four years later, in 1735, Euler finally succeeded
where so many others had failed. Admitting that his previous efforts had fallen
short and that “it seemed most unlikely to be able to find anything new about
this,” Euler wrote with obvious joy:’

Now, however, against all expectation I have found an elegant expres-
sion for the sum of the series 1 + + 1 gt ‘ + etc., which depends
on the quadrature of the circle. . I have found that six times the sum

3Ibid, pp 73-74
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of this series is equal to the square of the circumference of a circle
whose diameter is 1.

To us, this wording about diameters and circumferences seems round-
about—both geometrically and metaphorically—but because the circumfer-
ence of such a circle has length 7, Euler was asserting (in modern notation)
that

Y E

Ever since, this has stood as one of the most wonderful formulas in
mathematics. Those seeing it for the first time are puzzled by the unexpected
appearance of # in a series of perfect squares, and at first glance it looks more
like a typo than a theorem. Never fear: Euler was right.

His brief argument required two modest observations and one typically
Eulerian leap of faith. First of all, we note that if P(x) = 0 is an nth degree
polynomial equation with non-zero roots a;, a3, as, . . . , a, and such that P(0) =
1, then in factored form

o= (=) (=) (-)(-2)

This is self-evident, because substituting x = O gives P(0) = 1, just as substi-
tuting x = q; yields P(q;) = Ofork = 1,2,...n.
Second, he needed the series expansion of sin x, namely

. 3o XX
smx=x—§+75—!-—ﬁ+§?—- .

This formula, recognizable to any calculus student, was well known to Euler.

(In Chapter 5, we shall discuss his derivation of this expansion, one whose use

of the infinitely large and infinitely small is reminiscent of his development of

the series for log(l + x) from Chapter 2.)

These were the prerequisites underpinning his great discovery. The leap of
faith was a belief that whatever holds for an ordinary polynomial will likewise
hold for an “infinite polynomial.” In this case, he assumed that a polynomial-
like expression with infinitely many roots can be factored as P(x) was factored
above. Euler offered no proof of this, but for one who believed in the universality
of formulas, it was a natural symbolic extension.

We now are ready for Euler’s solution of the Basel problem.5

SIbid , pp 84-85
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A 5 )
Theorem. Zkiz = %—
k=1

Proof. Euler introduced

x2 xt x® «B

P(X)=1—§'+'§—’-"'77-'—+§T“"",

which he regarded as an “infinite polynomial.” Clearly P(0) = 1. To find the
roots of P(x) = 0, note that for x # 0,

1= x2/30 4 x4 /50— x8/71 + x8/91 — .. }
x

Px)=x

x-S =X /T X0 /9 — - sinx

X x
So P(x) = Oimplies that sin x = 0, which means in turn that x = k7 for
k= 1,2,.... Note that x = 0 is not a solution to P(x) = O because P(0) = 1.
In light of the observation above, he now factored P(x) as:

2 4 6

1_%+§T_%+..-=P(x)
=(1-2)(1-%)(1-2) (- =) (3.3)
X(l—’é%)(l—_;qr)'”

x2 x? x? x2
‘“[l ;f] [’ a:;z"} [’ 57,;5] [1 ““‘mz]'“-

This is the chapter’s most important formula. Euler had written P(x) in two very
different ways, equating the infinite sum on the left with the infinite product on
the right.

What next? For Euler, nothing could be more natural than to expand the
right side of (3.3) to get:

34

T B I ,
E — —_ 4 + + 4+ .. 4 e
: (wz 472 92 1672 )x

where the coefficients of x* and higher (even) powers are unnecessary and, for
the moment, unknown. He then equated the coefficients of x2 in (3.4) to get
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1 1 1 1 1
—— ===+ +

3! (772 an? " 9m T Tem T )

1 1 1 1
=== {1+ +=+—
2(1 4 9 l6+ )
and concluded in dramatic fashion that
1 1 1 w2
ot — =
! 4 9 16 6 QED

As he had promised, six times the sum of the series is the square of .
The Basel Problem was solved.

Of course Euler stands open to the charge of playing fast and loose with
the logic. Over time, even he appeared troubled by the course his argument
had taken and in later writings provided altemative—and what he considered
more rigorous—derivations of this same formula. We shall examine one of
these in the chapter’s epilogue. Although none was entirely successful by
modem standards, the reader should be assured that fully rigorous proofs have
subsequently confirmed Euler’s result.’

Such misgivings aside, Euler was confident that he had answered
Bernoulli’s unresolved question. There were internal indications that bolstered
this certainty. For instance, a quick calculation revealed that 72 /6 ~ 1.644934,
the precise estimate Euler had discovered a few years earlier. Numerically, he
was right on target.

Moreover, his line of reasoning led to a previously known gem: Wal-
lis’s formula. In 1655, the English mathematician John Wallis (1616-1703),
considering a different question and following a different logical path, had
demonstrated that

1-3-3:-5:5-7-7-9--.
2:2:4-4-6-6-8-8---°
In the Introductio, Euler showed how the infinite product of (3.3) led to an

alternate derivation of Wallis’s formula. Putting x = 7/2 into that expression
yields

p (3) _ [1 _ WZ)Z} [1 _ (vr/:z)z} {1 B (vr/2>2] [1 B (,,/2)2]

2 w2 42 972 1672

2_
(is

"Dan Kalman, “Six Ways to Sum a Senes,” The College Mathematics Journal, Vol 24, No 5.
1993, pp. 402421



Euler and Infinite Series 49

which simplifies to

M: 1-_1. 1___1_ l_l. 1._1
w/2 4 16 36 64
3 15 _ 35
= — X e e X e )
4 1 ><36
In short,
3=1 3-3-5:5-7-7:9
w 2:2-4-4:6-6-8-8-:

Here we have Wallis's formula as a corollary. Surely this established
that Euler’s train of thought had not derailed. If his argument could recover
previously known results such as this, there seemed all the more reason to
embrace his initial conclusion.®

Quickly Euler’s discovery flashed around the European mathematical
community (if “flashed” is the correct verb to characterize eighteenth-century
mail service). When Johann Bernoulli learned of the solution he wrote:

Utinam Frater superstes effet !
(If only my brother were alive!)®

André Weil called this “One of Euler’s most sensational early discoveries,
perhaps the one which established his growing reputation most firmly.”'° After
this triumph, anyone who counted in European mathematics knew of the young
genius who had succeeded so brilliantly where all others had failed.

It is easy to imagine that such success would lead many people to sit back,
accept the plaudits of colleagues, and live off their well-deserved reputations.
This was not Euler’s way. On the contrary, once he had grasped a fruitful idea,
he held on with an iron grip, squeezing out every last drop of information in an
awesome exhibition of both genius and tenacity. So it was in this case.

For instance, he turned his attention to finding the exact sum of p-series
with p > 2. Euler realized that this would require him to determine explicitly
the coefficients of x*, x®, and so on in equation (3.4). Fortunately the tools
necessary for such a determination were available in what are now called
“Newton’s formulas.” These, published in Newton’s Arithmetica Universalis,

8Euler, Introduction to Analysis of the Infinite, Book 1, pp. 154-155

%Johann Bernoulli, Opera Omnia, Vol 4, Georg Olms Verlagsbuchhandlung, Hildesheim, 1968
(Repnnt), p. 22

1OWeil, p. 184
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describe the links between the roots and the coefficients of a polynomial. In
Newton’s words:

... the coefficient of the second term in an equation is, if its sign be
changed, equal to the aggregate of all the roots under their proper
signs; that of the third equal to the aggregate of the products of the
separate roots two at a time; that of the fourth, if its sign be changed,
equal to the aggregate of the products of the individual roots three at
a time; that of the fifth equal to the aggregate of the products of the
roots four at a time; and so on indefinitely.!!

Here we shall give Euler's derivation of formulas—equivalent to
Newton's—relating the roots and coefficients.'? His proof, which dates from
1750, took a most unusual path to his desired end, unexpectedly introducing
techniques of differential calculus to solve a problem in algebra. Yet, promised
Euler,

even if [this derivation] seem exceedingly remote, nevertheless it
perfectly resolves the entire situation.

His argument is so delightful, so thoroughly “Eulerian,” that it deserves our
attention.

Theorem., Ifthe nthdegree polynomial P(y) = y"—Ay" 1+ By~ 2—Cy"~3+
*+ X Nis factored as P(y) = (y — n)(y — r2) - - - (y — r), then

n

Zr,? = AZ":r,? —an:rkz + Cirk — 4D, and so on.
k=1 k=1 k=1

k=1

Proof. BEuler’s objective was to connect the polynomial’s coefficients A, B,
C...., N and its roots ry, ry,.. ., r,. His first step, somewhat surprisingly, was

"'Whiteside, ed , The Mathematical Papers of Isaac Newton, Vol 5, p. 359
Y2Euler, Opera Omnia, Ser. 1, Vol 6, pp 20-25
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to take logs:
mP(y)=In(y —r))+In(y —r) + -+ + In(y — r).

The next step was more unanticipated—he differentiated both sides to get:

} .
Py _ 1 + 1 P 1 .
P(yy y-n y—n y—rg

(3.5)

As a final bit of analytic magic, Euler converted each fraction 1/(y — ry) into
its equivalent geometric series:

2

y—rn y\l—(n/y y y
1
y

2 3
- e . T . %%
=ttt

y y y
Therefore by (3.5)
/
P(y)= 1 + 1 PR 1
P(y) y—-n y—n Yy = rn

(3.6)

n n n
s [Zr;‘} iz + {Zrkz} —1-3- + [Zr,?] —1; Hoee,
Y k=1 Y k=1 Y k=1 Y
Note that this expresses P/(y)/P(y) in terms of the roots of the original poly-
nomial.

Because P(y) = y" ~ Ay"™! + By""2 — Cy"3 + ... = N, we have the
obvious alternative

P(y) _ny" ' —Am—Dy" 24+ Bn—2)y" 3 = Cn—3)y" 4 + -+
p(y) yrz — Ay"" + Byn—z — Cyn—3 + i+ N M

3.7
framed in terms of the coefficients of the polynomial. Yet again, Euler had
found different formulas for the same quantity, a ploy we have seen him use to
good effect twice before in this chapter.

Equating the expressions from (3.6) and (3.7), he cross-multiplied to get:
ny"™ ' — A= 1)y" 2+ Bn—2)y" —= Cn = 3)y" " 4+ -
— (yn _ Ayn—l + Byn—Z — Cyn—3 4o iN)
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n n
+ (nB—AZrk +Zr,3) Yy -
k=1 k=1

Both sides of this equation begin with ny"~!. Thereafter, we compare coef-
ficients of like powers of y and solve to get the desired relationships. For
example, equating the coefficients of y"~2 yields:

n n
—A(n~1)=-nA+Zrk, and thus Zrk=A.
k=1 k=1

From the coefficients of y"~3, we get:

n n n n
B(n—-2)=nB—-AZrk+Zrk2, so that er=AZr;{——28.
k=1 k=1 k=1 k=1

Indeed, one can push this many terms deeper into the expansion (as Euler did)
to find

n n n
drR=AY RR-BY n+3C
k=1 k=1 k=1
and
n n n n
Zr,f=A R—BY r2+CY n—4D,

k=1 k=1 k=1 k=1

and so on, with each new sum expressed in terms of previous ones, These are
the promised relationships. Q.E.D.

Convinced? There surely are points here deserving closer attention. For
instance, when considering In(y — r), Euler implicitly assumed that y > r,.
When expanding




Euler and Infinite Series 53

as a geometric series, an unspoken convergence assumption was present. Such
matters become problematic should one extend these rules to an “infinite poly-
nomial,” which is exactly what Euler did.

Still, it is impossible not to be struck again by Euler’s brilliance in attacking
an algebraic theorem about roots and coefficients by means of logarithms,
derivatives, and geometric series—all tools from his analytic arsenal. His was
an extremely agile mind.

What do these formulas have to do with summing p-series? To answer
that question, we consider a polynomial containing only even powers of x and
factored as follows:

1= A2 +Bx* = Cx®+ - = Nx = (1 — rx®(1 = rpx®) -+ (1 = rpx?).
(3.8)
Substitute 1/y for x*:

2 3 n
RORORIORS0
Yy Yy y y
= (I-nl) (1 —-rzl) (l —r,,-l-).
Yy y Yy
Then multiply both sides by y” to get:

YA BT = Oy T kN = (y )y~ )y = ).

This of course is precisely the case Euler considered above. Hence for
(3.8) also we have the formulas

@ > n=A,
k=1
n n

® Y r2 =AY r —2B, and
k=] k=1

(c) Zn:r,f ==A§n:rk2——BZn:rk + 3C.
k=1 k=1 k=1

Euler assumed that these relationships between coefficients and roots
remain valid even if both are infinitely plentiful—that is, when the sum runs
from k = 1 to «. He returned to (3.3)
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x2 X x5 K8

— —— 4+ - -+~

357t 9

x? x? x? x?
[1 :;z‘] [‘ ZF] [1 - '9';:] [‘ - I&?]
which looks exactly like an infinite version of (3.8) with A = 1/3!, B = 1/5|,
C=1/7andr, = 1 /k*w* fork = 1,2.....
According to (a), Y ;. 1/k*w* = 1/3! = 1/6and so 3, 1/k* =

/6. This, of course, is Euler’s “sensational” result derived above. But (b)
and (c) yield entirely new information:

(€)= () -=

These are very strange. In his original paper Euler pushed further to
evaluate p-series for p = 8, 10, and 12 . Later, in a 1744 publication, he gave
exact sums for even values of p up to the colossal, if slightly ridiculous,!3

1315862
- 27 2%y — 2
Z:k% 27!(769779277r ) = 11094281976030578125 "

Here Euler was answering questions no one had ever before asked. Better
yet, his work contained the seeds for future research, including a link to what
are now called the Bernoulli numbers and a hint of the Riemann zeta function
that would prove so significant in the nineteenth century.' It was indeed an
impressive display by a young mathematician aptly described by Frangois
Arago as “analysis incarnate.”">

BEuler, Opera Omnia, Ser. 1, Vol. 14, p. 185,

14 Ayoub, pp. 10671086,

YSHoward Eves, An Introduction to the History of Mathematics, 5th ed., Saunders, New York,
1983, p. 330
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Epilogue

Here we shall address three topics related to the work of this chapter. First, we
provide Euler’s alternate solution of the Basel Problem. Second, we describe
his application of the discoveries recounted above. And finally, we discuss a
subsidiary challenge that has resisted the efforts of Euler and all who followed.

As noted, some of Euler’s contemporaries, while accepting his answer
to the Basel Problem, wondered about the validity of the argument that got
him there. Daniel Bernoulli was especially concerned and wrote Euler in this
regard.'® In an attempt to silence such doubters, Euler devised another, quite
different, proof that >";_, 1/k* = @2 /6. Although unlike the first, it is every
bit as masterful.!”

This argument requires three preliminary results, each of which falls well
within the scope of a modern calculus course,

X sin~!t

VI1—12

This follows immediately from the substitution 4 = sin™!¢.

dr:

1 _
A. Prove the identity E(sin lx)2 = /
0

B. Find a series expansion for sin™! x:

Recalling that

X
sin"x=/ dt = /(1 — 3y V2 gy
0 \/1—12

we replace the expression under the integral by its binomial series and integrate
termwise to get

sin"x=/ (1+12+ 13 4 11356, 13574, )dr
0

2 22 .21 23+ 31 24 - 41
1 2 13 ¢t 1-3-5 7
= —X =+ —X =+ X —
Py X3ty st g
1-3-5-7 ¢ x
+ X — +
2:4:6-8° 9 0

15Euler, Opera Omnia, Ser. 1, Vol 14,p 141
7bid., pp 178-181
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1 X 1-3 x5 1-3:5 7
=x+=XT "X+ i
R AR N W Sy S S ey Rl
1:3:5-7  X°
X =+
eV Er T R

|

i n+2 + | n
C. Prove the relation / ! dt = ntl / ! dt for n=1:
0 1

.\/l_tz n+2 0 _.,2

For

I !n+2
J= / dt,
0 V1—12
apply integration by parts with u = t"*! and dv = (t//1 — 12)d! to get

1 i
J=(—=1""'1-12) +(n+l)f "Vl —12dt
0 0

lt"(l'—fz)
=0+ ( +1)f —— dt
" 0 1—12

—(n+ 1)J.

Therefore

(n+2)J = m+n/ dt,

VvV1-—1¢2
and the result follows.

Fine. We now follow Euler in assembling these components to re-prove
his formula. Simply let x = [ in (A) to get:

2 ] L |
1=1@MHF=/ sm_t o
2 0

8 ,/l_tz

Next, replace sin™! r with its series expansion from (B) and integrate termwise:

m? | &
R / ,/1..,2 2'3/0 ,/1_,2 2 4- 5/ ,/1_.,2
1-3:5

2467/ \/l_.tz

Knowing that
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we evaluate the other integrals using the recursion in (C):

. 1 2], 13 [2_ 4] 1-3-5([2 4 6
—_— = 4+ — | - _ X - [T S — - .o
g = ! 2-3[3]+2-4-5[3 5]+2'4'6-7[3X5X7]+

—1+1+-l—+~l—+
9 49

a summation involvmg only the odd squares.

From here Euler needed the following simple observation to reach his
desired end.

=—1 ! i+i+- 1+l+1+l+1+
"9 25 49 ] 4 9 16 25
? I o 1
::__+... —_—
RPNy
k=1
Thus
3en1 7
i
k=1
and so
1 4 7w 2
—= = X e = —,
2 BE=3 T =% QED

There, before us, is the solution of the Basel Problem. This derivation, so
different from the first, is the work of an analyst at the top of his powers—and
one who seems to be enjoying himself immensely.

The epilogue’s second objective is to show Euler applying his formulas
to other, seemingly unrelated, matters. Indeed, he asserted that the “principal
use” of these results “is in the calculation of logarithms.”'® Although this claim
may sound far-fetched, he was happy to explain what he had in mind.

18Euler, Introduction to Analysis of the Infinite, Book I, p 158
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Consider again the chapter’s pivotal equation, labeled (3.3):

x? x2 x? x2
o -] B 2] -]

Recalling that P(x) = (sin x)/x for x # 0, we cross-multiply to get the infinite
product

2 2 2 2
inx =x 11— 2 -2 - A I
St x x[ 'rrz] [1 47er [1 9#2} [I 16172] ’

a result that holds even if x = 0.
When confronting this (or any) product, Euler seemed unable to resist
taking logarithms. Such was the case here, and as usual it paid off:

. x2 xz xz
1n(smx)=lnx+ln(l -—7;) +ln(1—-4—7-’_—2-) +In (1 —_9._1;5) + e

which, for x = m/n, becomes

In (sin%’) =Inm—Inn+In (1 - ',,l—z)

1 !
—— iy VIR
+In (1 4n2> +1In (1 9n2)

Perhaps the reader is by now sufficiently familiar with Euler’s methods to
anticipate that his next step was to introduce the series expansion of In(1 — x)
fo get:

In(sin%) =ln7T—lnn+ [——-!-—._l___l_J

B IR AU S
4n?  32n*  192n0
1 1 1
+ —— s — —_ e
[ 9n2  162n*  2187n® }+

1 I 1
=1nw~lnn—;(l+z+—9—+---)

! 11
- e
2n4(l+l g1 " )

1 1,1
—_—— +__+____+... — ey
3n6(l 64 ' 729 )
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Remarkably, this formula contains precisely the p-series Euler had evaluated.
It follows that

ln(sinz)=lnw lnn——!— ZE ——-1—— lri ——..1_ m° -
n n2\ 6 2t \ 90 3n® \ 945

What emerges is a rapidly converging series for In(sin 7/n). To see it in action,
choose n = 7 and approximate

s 1 /n? 1 at
in oY =1 m7—- —(*\__ ! (7
In (Sm 7) nw = In7 49 < 6 ) 4802 (90)

352047 \ 543

~ —(.83498,

which, with only five terms, is accurate to within *0.00000005.

Euler had found a way of computing logarithms of sines with great effi-
ciency. More remarkably, he did so while short-cutting the numerical values of
the sines themselves, as he himself observed when he wrote:

[wlith these formulas, we can find both the natural and the common
logarithms of the sine and cosine of any angle, even without knowing
the sines and cosines. [italics added]'?

In spite of such success, Euler got nowhere on a fundamental problem: to
evaluate the p-series for odd values of p. Even the simplest of these,

&6

! 11+-—1—+1+l+1+1+-~
k3 8 27 64 125 216 343 '

resisted explxcit solution. Euler’s original proof—as it emerged from equation
(3.3)—was obviously geared toward even powers of x, and thus even values
of p. Odd exponents slipped through his net.

Euler was keenly aware of the situation. The best he could do in his 1735
paper was to evaluate the loosely related series??

1 1 i 3

—— — —-— k = e
27 125 Zo Y a1y (2k k+1y3 32

This was an intriguing answer. Unfortunately, it was to the wrong question,

Pbid , p. 165
2Buler, Opera Omnia, Sex. 1, Vol 14,p 80
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For guidance, Euler again turned to numerical approximations.?! Because
Y=t VK2 = m?/6and Yp 1/k* = 7/90, he naturally conjectured that
S k=1 1/k* = m/m for some integer m falling between 6 and 90. With
customary zeal, Euler calculated >/, 1/k* =~ 1.202056903 and, setting this
equal to 7* /m, deduced that m = 25.79435—hardly a promising resul.

At a later point, Euler conjectured that

3 5 =e2?+ 2
ok 6

for rational numbers « and .22 Intriguing though this was, it too led him
nowhere. ,

So what do we know today about }~,", 1/k3? The answer is, “Disap-
pointingly little.” Progress over the centuries has been minimal. Indeed, only
in 1978 did Roger Apéry manage to show that 3", 1/k* sums to an ir-
rational number.?* His was an ingenious answer to a difficult question, Yet
the conclusion was both unsurprising and unsatisfying—unsurprising because
the irrationality of this sum had been universally anticipated even if never
proved; unsatisfying because one would have preferred an exact answer, not a
broad classification like “irrational.” It is as though we were looking for Cap-
tain Kidd’s treasure and Apéry brilliantly demonstrated that it could be found
somewhere in the Solar System. Mathematicians had wanted something a little
more specific.

Worse, the irrationality of the series with p = 3 has as yet no counterpart
for p = 5, p = 7, or any of the higher odd powers. For these, we are no further
along than when Euler put down his pen over two centuries ago.

In this sense, even after 300 years, Jakob Bernoulli’s problem is with us
still. Faced with the mystery of the odd-valued p-series, one is tempted to throw
up one’s hands and reissue Jakob’s challenge from 1689: “If anyone finds and
communicates to us that which has thus far eluded our efforts, great will be our
gratitude.”

Then hope for a 21st century Euler.

211bid . p. 440

22Euler, Opera Omnia, Ser 1, Vol 4, pp 143-144

B Alfred van der Poorten, “A Proof that Euler Missed.” The Mathematical Intelligencer, Vol. 1,
No. 4, 1978, pp. 195-203,



