Math 121C1/E: Single-Variable

Contact: gwmelvin@colby.edu

SEPTEMBER 7 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 1.1, 1.3

KEYWORDS: function, increasing, decreasing, concave up/down, composition, inverse function

Functions

- A function f is a rule that assigns to each input x exactly one output $y=f(x)$. The collection of all inputs is called the domain of f; the collection of all possible outputs is called the range of f.
What do we care about?
Representations of functions:
- in words
- table
- graph i.e. in (x, y)-plane plot the points $y=f(x)$
- formula e.g. $f(x)=x^{2}+3 x-5$

Types of functions:

- linear i.e. $f(x)=m x+b$
- exponential (to be discussed 9/10)

Descriptions of functions:

- increasing/decreasing
- concave up/down
- Remark: we focus on graph/formula representations; we will develop techniques to plot the graph given a formula.
- Let $f(x), g(x)$ be two functions with the property that the range of $f(x)$ is contained in the domain of $g(x)$ i.e. outputs of $f(x)$ are inputs of $g(x)$. We can form the composition $g(f(x))$:

- Remark: the notation can be confusing: $g(f(x))$ means

DO f FIRST AND THEN DO g

Example:

1.

$f:$ people in classroom \rightarrow distance travelled to Colby (miles)
$g:$ distance to Colby (miles) \rightarrow cost in gas (USD)
The outputs of f are the inputs of g so we can form the composition $g(f(x))$: it is the function that assigns to each person in class the cost (in USD) of gas to get to Colby.
2. Let $f(x)=x^{2}, g(x)=2 x^{2}+3 x+2$, where the domain for both functions is the collection of all real numbers. Then, outputs of f are inputs of g and we can form the composition:

$$
g(f(x))=g\left(x^{2}\right)=2\left(x^{2}\right)^{2}+3\left(x^{2}\right)+2=2 x^{4}+3 x^{2}+2
$$

- WARNING: Be careful! In the examples above:

1. $f(g(x))$ does not make sense: output of g is a number, while the input of f is a person. Can't form the composition in this instance.
2.

$$
f(g(x))=f\left(2 x^{2}+3 x+2\right)=\left(2 x^{2}+3 x+2\right)^{2}=4 x^{4}+12 x^{3}+17 x^{2}+12 x+4 \neq g(f(x))!!
$$

ORDER OF COMPOSITION IS IMPORTANT!

An interesting example:

$$
\begin{array}{ll}
f(x)=\frac{1}{1-x}, & \text { inputs all } x \neq 1 \\
g(x)=1-\frac{1}{x}, & \text { inputs all } x \neq 0
\end{array}
$$

Note: outputs of f are inputs of g : outputs of g are inputs of $f \Longrightarrow$ can form the compositions $f(g(x))$ and $(g(f(x))$.

$$
\begin{aligned}
& f(g(x))=f\left(1-\frac{1}{x}\right)=\frac{1}{1-(1-1 / x)}=\frac{1}{\frac{1}{x}}=x \\
& g\left(f(x)=g\left(\frac{1}{1-x}\right)=1-\frac{1}{\frac{1}{1-x}}=1-(1-x)=x\right.
\end{aligned}
$$

How to interpret (*) and (**)?

- (*) Let $y=g(x)$ be an output of g. Then, $(*)$ says that f is the function that outputs x when we input $y=g(x)$ i.e. f is the function that solves for x for the equation $y=g(x)$ e.g. if $g(x)=1.5$ then, to find x satisfying this equation we compute $f(1.5)=-2$. Hence, $g(-2)=1.5$.
- $(* *)$ Let $y=f(x)$ be an output of $f(x)$. Then, $(* *)$ says that g is the function that outputs x when we input $y=f(x)$ i.e. g is the function that solves for x for the equation $y=f(x)$ e.g. if $f(x)=3$ then, to find x satisfying this equation we compute $g(3)=2 / 3$. Hence, $f(2 / 3)=3$.
- Let $f(x)$ be a function. If there is a function $g(x)$ satisfying
- Domain $g=$ RANGE f
- RANGE $g=$ DOMAIN f
- $f(g(x))=x$ and $(g(f(x))=x$
then we say that $g(x)$ is the inverse function of $f(x)$ and write $f^{-1}(x)=g(x)$.
- Example: the function $g(x)=1-\frac{1}{x}$ is the inverse function of $f(x)=\frac{1}{1-x}$.
- Note:

1. Be careful of the notation introduced above: we are not saying that $f^{-1}(x)=$ $\frac{1}{f(x)}$ e.g. in the example above

$$
\frac{1}{f(x)}=\frac{1}{\frac{1}{1-x}}=1-x \neq g(x)
$$

2. It's not true that every function has an inverse function e.g. the function $f(x)=x^{2}$, with domain being the collection of all real numbers, does not have an inverse function. We'll see why in class on $9 / 10$.
