Contact: gwmelvin@colby.edu

September 26 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 2.3

KEYWORDS: the derivative function, power law, linearity, Leibniz notation

The Derivative Function contd.

Some Derivative Rules

- Power Law: if $f(x)=x^{n}$, where $n \geq 0$ is an integer, then $f^{\prime}(x)=n x^{n-1}$
- Linearity: Let $f(x), g(x)$ be functions with derivatives $f^{\prime}(x), g^{\prime}(x)$.
- $(f \pm g)^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)$,
- $(c f)^{\prime}(x)=c f^{\prime}(x)$, for any constant c.

Notation: The 'prime notation' $f^{\prime}(x)$ is due to Lagrange (1736-1813). We also write

$$
\frac{d}{d x} f(x)=f^{\prime}(x)
$$

If $y=f(x)$ then write

$$
\frac{d y}{d x}=\frac{d}{d x} f(x)=f^{\prime}(x)
$$

This is called Leibniz notation. For example, the above rules become

- Power Law: if $f(x)=x^{n}$, where $n \geq 0$ is an integer, then $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
- Linearity: Let $f(x), g(x)$ be functions with derivatives $f^{\prime}(x), g^{\prime}(x)$.
- $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)$,
- $\frac{d}{d x}(c f(x))=c \frac{d}{d x} f(x)$, for any constant c.

1. $f(x)=7 x^{3}-2 x^{2}+9, \frac{d}{d x} f(x)=21 x^{2}-4 x$.
2. $y=x^{32}-x^{10}+2 x^{8}+\pi^{2} x^{3}-3, \frac{d y}{d x}=32 x^{31}-10 x^{9}+16 x^{7}+3 \pi^{2} x^{2}$.

Remark: We can now compute derivatives of any polynomial function.
Example: Let $f(x)=\sqrt{x}=x^{1 / 2}$. What's the derivative?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
= & \lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Hence,

$$
\frac{d}{d x}\left(x^{1 / 2}\right)=\frac{1}{2} x^{-1 / 2}
$$

This provides some evidence towards the following:
Fact: Let r be any real number. Then,

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

Example:

1. Let $y=\frac{3}{x^{2}}+2 \sqrt[3]{x^{3}}-3=3 x^{-2}+2 x^{3 / 2}-3$. Then,

$$
\frac{d y}{d x}=-6 x^{-3}+3 x^{1 / 2}=-\frac{6}{x^{3}}+3 \sqrt{x}
$$

2. Let $f(x)=\frac{2 x^{3}-5 \sqrt{x}}{x^{2}}=2 x-5 x^{-3 / 2}$. Then, $f^{\prime}(x)=2+\frac{15}{2} x^{-5 / 2}=2+\frac{15}{2 \sqrt{x^{5}}}$.

Observe: If $f(x)=\sqrt{x}$ then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ is undefined at $x=0$.

This corresponds to fact that the tangent line to the graph $y=\sqrt{x}$ at $x=0$ is vertical i.e. its slope is undefined.

