Contact: gwmelvin@colby.edu

September 25 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 2.3

Keywords: the derivative function

The Derivative Function

- Recall: Let $f(x)$ be a function. The derivative function of $f(x)$ is the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Some Derivative Rules

- Power Law: if $f(x)=x^{n}$, where $n \geq 0$ is an integer, then $f^{\prime}(x)=x^{n-1}$
- Linearity: Let $f(x), g(x)$ be functions with derivatives $f^{\prime}(x), g^{\prime}(x)$.
- $(f \pm g)^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)$,
- $(c f)^{\prime}(x)=c f^{\prime}(x)$, for any constant c.

Example: Let $f(x)=3 x^{3}-x-1$. Then

$$
f^{\prime}(x)=3\left(x^{3}\right)^{\prime}-(x)^{\prime}-(1)^{\prime}=9 x^{2}-1
$$

This agrees with what we'd compute using the limit definition

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3(x+h)^{3}-(x+h)-1-\left(3 x^{3}-x-1\right)}{h} \\
=\lim _{h \rightarrow 0} \frac{3\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x-h-1-3 x^{3}+x+1}{h} \\
=\lim _{h \rightarrow 0} \frac{9 x^{2} h+9 x h^{2}+3 h^{3}-h}{h}=\lim _{h \rightarrow 0}\left(9 x^{2}-1+9 x h+3 h^{2}\right) \\
=9 x^{2}-1
\end{gathered}
$$

Proof of the Power Law: The Binomial Theorem states that, for any integer $n \geq 0$,

$$
(x+y)^{n}=1 \cdot x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots+\binom{n}{n-2} x^{2} y^{n-2}+\binom{n}{n-1} x y^{n-1}+1 \cdot y^{n}
$$

where $\binom{n}{k}$ is a binomial coefficient, determined using Pascal's Triangle:

The next row is obtained by adding successive pairs of numbers in the preceding row e.g. the $n=5$ row is 15101051 .

For example,

$$
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

the coefficients are obtained by reading off the corresponding row. It's always the case that $\binom{n}{1}=n$.
If $f(x)=x^{n}$ then
$f(x+h)=(x+h)^{n}=x^{n}+\binom{n}{1} x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\ldots+\binom{n}{n-2} x^{2} h^{n-2}+\binom{n}{n-1} x h^{n-1}+h^{n}$
Hence,

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
=\lim _{h \rightarrow 0} \frac{x^{n}+\binom{n}{1} x^{n-1} h+\ldots++\binom{n}{n-1} x h^{n-1}+h^{n}-x^{n}}{h} \\
=\lim _{h \rightarrow 0}\left(\binom{n}{1} x^{n-1}+\ldots+\binom{n}{n-1} x h^{n-2}+h^{n-1}\right)=\binom{n}{1} x^{n-1}=n x^{n-1}
\end{gathered}
$$

Intermediate Value Theorem: (this should have been introduced when we were discussing continuity)

- Let $f(x)$ be a continuous function defined on the domain $a \leq x \leq b$. Suppose that $f(a) \leq k \leq f(b)$ or $f(a) \geq k \geq f(b)$. Then, there is $a \leq c \leq b$ such that $f(c)=k$.

Example: Let $f(x)=5^{x}-\frac{1}{x}$. Then, $f(1 / 3)=\sqrt[3]{5}-3=-1.29 \ldots<0$ and $f(1)=$ $5^{1}-1=4>0$. Let $k=0$. Hence, by IVT there's some $1 / 3 \leq c \leq 1$ so that $f(c)=0$.

