Contact: gwmelvin@colby.edu

SEPTEMBER 21 SUMMARY

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 2.2

Keywords: derivative at a point

Derivative at a point

- Derivative at a point: Let $f(x)$ be a function, $x=a$ in the domain of $f(x)$. The quantity

$$
\frac{f(a+h)-f(a)}{h}
$$

measures the slope of the secant line through $(a, f(a))$ and $(a+h, f(a+h))$. It determines what we will call the average rate of change of $f(x)$ with respect to x on the interval $[a, a+h]$ (note: also allow $h<0$ so that $a+h<a$). Therefore,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

determines the slope of the tangent line to $y=f(x)$ at $(a, f(a))$.

Example:

1. Let $f(x)=x^{3}-27 x+2, a=3$. First, we note that

$$
(3+h)^{3}=27+27 h+9 h^{2}+h^{3}
$$

Then,
$\frac{f(3+h)-f(3)}{h}=\frac{(3+h)^{3}-27(3+h)+2-(27-27 \cdot 3+2)}{h}=\frac{9 h^{2}+h^{3}}{h}=9 h+h^{2}$
This last expression is a continuous function of h so we can evaluate $\lim _{h \rightarrow 0} 9 h+h^{2}$ by substituting $h=0$. Hence,

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} 9 h+h^{2}=0
$$

This tells us that the tangent line to $y=x^{3}-27 x+2$ at $x=3$ is horizontal i.e. has slope 0 . This can be interpreted as saying that near to $(3, f(3))=(3,-52)$ the graph is locally flat.
2. Let $g(x)=\frac{1}{x}, a=-3$. Then,

$$
\frac{g(-3+h)-g(-3)}{h}=\frac{1}{h}\left(\frac{1}{-3+h}-\frac{1}{-3}\right)=\frac{-h}{-3 h(-3+h)}=\frac{1}{3(h-3)}
$$

Hence, since this last expression is a continuous function of h, and defined at $h=-3$, we can substitute $h=-3$ to get

$$
\lim _{h \rightarrow 0} \frac{g(-3+h)-g(-3)}{h}=\lim _{h \rightarrow 0} \frac{1}{3(h-3)}=\frac{-1}{9}
$$

This tells us that the tangent line to $y=\frac{1}{x}$ at $x=-3$ has slope $-1 / 9$ i.e. near to $(-3,-1 / 3)$ the graph/function is decreasing.
We can compute the tangent line using point-slope formula: given a point (a, b) and slope m, there is a unique line with slope m passing through (a, b) given by equation $y-b=m(x-a)$. Hence, equation of tangent line through $(3,-1 / 3)$ is

$$
y-(-1 / 3)=\frac{-1}{9}(x+3) \quad \Longrightarrow \quad y=-\frac{x}{9}-\frac{2}{3}
$$

- The derivative of $f(x)$ at $x=a$ is

$$
f^{\prime}(a) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- $f^{\prime}(3)=0, g^{\prime}(-3)=-1 / 9$.
- Let $f(x)$ be a function, $x=c$ in the domain of $f(x)$. Say that $f(x)$ is continuous at $x=c$ if
(A) $\lim _{x \rightarrow c} f(x)=L$ exists, and
(B) $L=f(c)$.

If $f(x)$ is continuous for every c in its domain then we say $f(x)$ is continuous.

Example:

1. $f(x)=2 x$, domain $=\mathbb{R}$. Our computation from $9 / 14$ showed that $\lim _{x \rightarrow 2} f(x)=4$.

Since $f(2)=4$, we have that $f(x)$ is continuous at $x=2$.
More generally: using Limit Laws we can show that, for any real number c,

$$
\lim _{x \rightarrow c} 2 x \stackrel{L \underline{L 1}}{=} 2 \lim _{x \rightarrow c} x \stackrel{L \underline{L} 6}{=} 2 c
$$

Thus, since $f(c)=2 c, f(x)=2 x$ is continuous at every point in its domain. Hence, $f(x)$ is continuous.
2. Let $f(x)=\left\{\begin{array}{lc}2 x, & x \neq 2 \\ 0, & x=2\end{array}\right.$. Then, $\lim _{x \rightarrow 2} f(x)=4$. However, $f(2)=0 \neq 4$. Hence, $f(x)$ is not continuous at $x=2$.

3. Consider $f(x)=\left\{\begin{array}{ll}1, & x>0 \\ -1, & x \leq 0\end{array}\right.$. In this case, $\lim _{x \rightarrow 0^{+}} f(x)=1$ while $\lim _{x \rightarrow 0^{-}} f(x)=-1$.

Therefore, $\lim _{x \rightarrow 0} f(x)$ does not exist and $f(x)$ is not continuous at $x=0$.

4. Consider $f(x)=\left\{\begin{array}{ll}x^{2}, & x<0 \\ x, & x \geq 0\end{array}\right.$. As x approaches $0, f(x)$ approaches 0 from both sides. Hence, $\lim _{x \rightarrow 0} f(x)=0$. Since $f(0)=0, f(x)$ is continuous at $x=0$.

George-given Truths:

- all 'nice' functions - e.g. polynomial, rational, exponential, trigonometric, logarithmic - are continuous everywhere in their domain.
- piecewise functions are continuous, except possibly at jump discontinuities.

Example: Determine $\lim _{x \rightarrow 7} \frac{x^{3}-7 x^{2}+1}{x^{2}+3}$.
Define $f(x)=\frac{x^{3}-7 x^{2}+1}{x^{2}+3}$. Then, f is defined for all x. Since $f(x)$ is a rational function, it is continuous everywhere. In particular, $f(x)$ is continuous at $x=7$ so that

$$
\lim _{x \rightarrow 7} \frac{x^{3}-7 x^{2}+1}{x^{2}+3}=\lim _{x \rightarrow 7} f(x)=f(7)=\frac{7^{3}-7 \cdot 7^{2}+1}{7^{2}+3}=\frac{1}{52}
$$

