Contact: gwmelvin@colby.edu

September 18 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.8

KEywords: limits at infinity, rigorous definition of limit

Limits contd.

Example: (Non-existent limits)
Consider $f(x)=\sin (1 / x), x \neq 0$.

- if $x=\frac{2}{\pi}, \frac{2}{5 \pi}, \frac{2}{9 \pi}, \ldots$ then $1 / x=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots$ and $f(x)=1$ for these values of x.
- if $x=\frac{2}{3 \pi}, \frac{2}{7 \pi}, \frac{2}{11 \pi}, \ldots$ then $1 / x=\frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}, \ldots$ and $f(x)=-1$ for these values of x.
- Summary: as we approach $x=0$ from the right, $f(x)$ oscillates back and forth between 1 and -1 i.e. $f(x)$ does not approach a single value as x gets closer to 0 $\Longrightarrow \lim x \rightarrow 0 f(x)$ DNE.
Other types of limits: limits at infinity
- If $f(x)$ approaches a finite real number L as x gets very large then we write $\lim _{x \rightarrow \infty} f(x)=L$.
- If $f(x)$ approaches a finite real number L for $x<0$ and as $|x|$ gets very large then we write $\lim _{x \rightarrow-\infty} f(x)=L$.

Example: Let $f(x)=1-\frac{1}{x}, x \neq 0$. As x gets very large, $\frac{1}{x}$ becomes very small and $1-\frac{1}{x}$ gets close to $1-0=1$. Hence, $\lim _{x \rightarrow \infty} f(x)=1$.
Similarly, for $x<0$ with $|x|$ very large, the quantity $\frac{1}{x}$ is negative with small absolute value. Hence, $1-\frac{1}{x}$ gets close to $1+0=1 \Longrightarrow \lim _{x \rightarrow-\infty} f(x)=1$ also.

Rigorous definition of limit

- Recall: we write $\lim _{x \rightarrow c} f(x)=L$ if $f(x)$ approaches L as x gets close, but not equal, to c. There is some ambiguity in what we mean by approaches and close in this
definition: how close do we want $f(x)$ to get to L ? Of course, we want $f(x)$ to get as close as we like to L. What this means is the following: I'll write $\lim _{x \rightarrow c} f(x)=L$ to signify that, no matter how small a number you give me, I can find values of x close enough to c so that $f(x)$ is within the distance you desire.
Mathematically we write: if you give me any small number $\epsilon>0$, I can find some distance $\delta>0$ so that, for those $x \neq c$ within distance δ of c, the values $f(x)$ are within ϵ of L. Now, realising that

$$
|a-b|<c \text { means 'the distance between } a \text { and } b \text { is less than } c \text { ' }
$$

we can give the rigorous definition of the limit:

- write $\lim _{x \rightarrow c} f(x)=L$ if, given any $\epsilon>0$, there exists $\delta>0$ so that

$$
x \neq c \text { and }|x-c|<\delta \quad \Longrightarrow \quad|f(x)-L|<\epsilon
$$

