SEPTEMBER 17 SUMMARY

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.8

Keywords: one-sided limits, Limit Laws

Limits contd.

- Let $f(x)$ be a function. Write $\lim _{x \rightarrow a} f(x)=L$ if the values of $f(x)$ approach L as x gets closer and closer, but not equal, to a.

Example: Let $f(x)=\frac{|x-5|}{x-5}, x \neq 5$

As x gets close to $a=5$ there are two possibilities for $L \Longrightarrow \lim _{x \rightarrow 5} f(x)$ DNE.

- if x approaches 5 from the right then $f(x)$ approaches $L=1$; we write

$$
\lim _{x \rightarrow 5^{+}} f(x)=1
$$

- if x approaches 5 from the left then $f(x)$ approaches $L=-1$; we write

$$
\lim _{x \rightarrow 5^{-}} f(x)=-1
$$

Call these one-sided limits.

- Even though the limit $\lim _{x \rightarrow 5} f(x)$ DNE, the two one-sided limits do exist.
- In general, $\lim _{x \rightarrow c} f(x)$ exists if both one-sided limits $\lim _{x \rightarrow c^{ \pm}} f(x)$ exist and are equal.
- Question: how to determine limits for $f(x)$ if we are unable to graph?

Limit Laws: Let $f(x), g(x)$ be functions. Assume that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ both exist.
(LL1) $\lim _{x \rightarrow c} b f(x)=b\left(\lim _{x \rightarrow c} f(x)\right)$, for any constant b.
(LL2) $\lim _{x \rightarrow c} f(x) \pm g(x)=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
(LL3) $\lim _{x \rightarrow c} f(x) g(x)=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)$
(LL4) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$, provided $\lim _{x \rightarrow c} g(x) \neq 0$.
(LL5) For any constant $k, \lim _{x \rightarrow c} k=k$.
(LL6) $\lim _{x \rightarrow c} x=c$.

Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{2 x^{2}+5 x+1}{x+4} \\
= & \frac{\lim \left(2 x^{2}+5 x+1\right)}{\lim (x+4)}, \quad \text { by LL4 } \\
= & \frac{2 \lim x^{2}+5 \lim x+\lim 1}{\lim x+\lim 4}, \quad \text { by LL1, LL2 } \\
= & \frac{2(\lim x)^{2}+5 \cdot 2+1}{2+4}, \quad \text { by LL5, LL } 6 \\
= & \frac{2 \cdot 2^{2}+5 \cdot 2+1}{2+4}, \quad \text { by LL3 } \\
= & \frac{19}{6}
\end{aligned}
$$

- Remark: the fact that this limit is equal to what we'd obtain by inputting $x=2$ into the expression and evaluating is a consequence of the fact that $f(x)=\frac{2 x^{2}+5 x+1}{x+4}$ is continuous at $x=2$. More on that tomorrow.
- Some further non-existent limits: consider the function $f(x)=\frac{1}{x^{2}}$. Then, as x gets closer and closer to $0, f(x)$ grows without bound i.e. there is no finite value L that $f(x)$ approaches as x approaches 0 . Hence, $\lim _{x \rightarrow 0} f(x)$ DNE.
In this very special case - when $f(x)$ grows without bound as x approaches 0 - we write $\lim _{x \rightarrow 0} f(x)=+\infty$. It's important to remember that this limit does not exist.

