

Math 121C1/E: Single-Variable Calculus Fall 2018

Contact: gwmelvin@colby.edu

September 17 Summary

SUPPLEMENTARY REFERENCES: - Calculus, Hughes-Hallet et al, Section 1.8

KEYWORDS: one-sided limits, Limit Laws

LIMITS CONTD.

• Let f(x) be a function. Write $\lim_{x \to a} f(x) = L$ if the values of f(x) approach L as x gets closer and closer, **but not equal**, to a.

Example: Let $f(x) = \frac{|x-5|}{x-5}, x \neq 5$

As x gets close to a = 5 there are two possibilities for $L \implies \lim_{x \to 5} f(x)$ DNE.

• if x approaches 5 from the right then f(x) approaches L = 1; we write

$$\lim_{x \to 5^+} f(x) = 1$$

• if x approaches 5 from the left then f(x) approaches L = -1; we write

$$\lim_{x \to 5^-} f(x) = -1$$

Call these **one-sided limits**.

- Even though the limit $\lim_{x\to 5} f(x)$ DNE, the two one-sided limits do exist.
- In general, $\lim_{x \to c} f(x)$ exists if both one-sided limits $\lim_{x \to c^{\pm}} f(x)$ exist and are equal.

• Question: how to determine limits for f(x) if we are unable to graph?

Limit Laws: Let f(x), g(x) be functions. Assume that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist.

(LL1)
$$\lim_{x \to c} bf(x) = b\left(\lim_{x \to c} f(x)\right)$$
, for any constant b .
(LL2) $\lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$

(LL3)
$$\lim_{x \to c} f(x)g(x) = \left(\lim_{x \to c} f(x)\right) \left(\lim_{x \to c} g(x)\right)$$

(LL4)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{ provided } \lim_{x \to c} g(x) \neq 0.$$

(LL5) For any constant k , $\lim_{x \to c} k = k.$

(LL6) $\lim_{x \to c} x = c$.

Example:

$$\lim_{x \to 2} \frac{2x^2 + 5x + 1}{x + 4}$$

= $\frac{\lim(2x^2 + 5x + 1)}{\lim(x + 4)}$, by LL4
= $\frac{2\lim x^2 + 5\lim x + \lim 1}{\lim x + \lim 4}$, by LL1, LL2
= $\frac{2(\lim x)^2 + 5 \cdot 2 + 1}{2 + 4}$, by LL5, LL6
= $\frac{2 \cdot 2^2 + 5 \cdot 2 + 1}{2 + 4}$, by LL3
= $\frac{19}{6}$

• **Remark:** the fact that this limit is equal to what we'd obtain by inputting x = 2 into the expression and evaluating is a consequence of the fact that $f(x) = \frac{2x^2+5x+1}{x+4}$ is continuous at x = 2. More on that tomorrow.

• Some further non-existent limits: consider the function $f(x) = \frac{1}{x^2}$. Then, as x gets closer and closer to 0, f(x) grows without bound i.e. there is no finite value L that f(x) approaches as x approaches 0. Hence, $\lim_{x \to 0} f(x)$ DNE.

In this very special case - when f(x) grows without bound as x approaches 0 - we write $\lim_{x\to 0} f(x) = +\infty$. It's important to remember that this **limit does not exist**.

