

Contact: gwmelvin@colby.edu

September 14 Summary

SUPPLEMENTARY REFERENCES:

- Calculus, Hughes-Hallet et al, Section 1.8

KEYWORDS: *limits*

LIMITS

• **Recall:** Let s(t) denote the position of an object moving on a straight line at time tsecs.

The instantaneous velocity of the object at time t = a equals the slope of the tangent line to y = s(t) at (a, s(a))

How to compute this slope? Use secant lines through (a, s(a)) and (b, s(b)): compute the slopes of these secant lines as b gets closer and closer, but not equal, to a.

Limits:

• Let f(x) be a function. Write $\lim_{x \to a} f(x) = L$ if the values of f(x) approach L as x gets closer and closer, **but not equal**, to a. Say: "limit of f as x approaches a is L"

• Also write: $f(x) \to L$ as $x \to a$.

Example:

1. f(x) = 2x:

x	f(x)
1.9	3.8
1.99	3.98
1.999	3.9998
2.1	4.2
2.01	4.02
2.001	4.002

As x gets close to a = 2, f(x) is getting closer to 4. Write $\lim_{x \to 2} 2x = 4$.

- **Remark:** nowhere in the above example have we determined f(2).
- 2. Define

To determine $\lim_{x \to 2} f(x)$ we proceed exactly as above: we determine $\lim_{x \to 2} f(x) = 4 \neq f(2)!$