Contact: gwmelvin@colby.edu

SEptEMBER 12 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 2.1

KEYWORDS: average velocity, instantaneous velocity, tangent line

Instantaneous Velocity

Consider motion of an object along a straight line:

$$
t=\text { time in secs, } \quad s(t)=\text { position at time } t
$$

- the average velocity over the interval $a \leq t \leq b$ is

$$
\frac{\text { change in position }}{\text { change in time }}=\frac{s(b)-s(a)}{b-a}
$$

- Example: Drop a bowling ball from the Tower of Pisa. Galileo's Law states that, after t seconds, the ball has fallen $s(t)=4.9 t^{2}$ metres.
ave. velocity over $0 \leq t \leq 5=\frac{s(5)-s(0)}{5-0}=\frac{4.9\left(5^{2}\right)-0}{5}=24.5 \mathrm{~ms}^{-1}$
- Objects falling under influence of gravity (neglecting air resistance) are accelerating at a constant rate i.e. the velocity is increasing at a fixed rate

- Ave. velocity on interval $0 \leq t \leq 5$ does not represent true velocity at $t=5$ secs. To approximate true velocity at $t=5$ secs consider a shorter time interval:
ave. velocity over $5 \leq t \leq 5.1=\frac{s(5.1)-s(5)}{5.1-5}=\frac{4.9(5.1)^{2}-4.9(5)^{2}}{0.1}=49.49 \mathrm{~ms}^{-1}$
Similar calculations over shorter time intervals give:

Interval	Ave. velocity $\left(\mathrm{ms}^{-1}\right)$
$5 \leq t \leq 5.1$	49.49
$5 \leq t \leq 5.01$	49.049
$5 \leq t \leq 5.001$	49.0049

- Can reinterpret average velocity:

$$
\text { ave. velocity over } 5 \leq t \leq b=\frac{s(b)-s(5)}{b-5}
$$

This gives slope of secant line through $(5, s(5))$ and $(b, s(b))$ on graph of $s(t)=4.9 t^{2}$

- Goal: Understand true velocity at $t=5$ secs.
- PRoblem: can't input $b=5$ into average velocity formula i.e. would divide by 0
- Strategy: consider average velocities as b gets closer and closer to 5 .
- Let $s(t)=$ position at time t of object moving in a straight line. Define instantaneous velocity of the object at $t=a$ to be the slope of the tangent line of the graph $y=s(t)$ at $(a, s(a))$

- Find the slope of tangent line L using secant lines through $(a, s(a))$ i.e. for any b consider the slope of the secant line passing through $(a, s(a))$ and $(b, s(b))$. Now let b get closer and closer to a, without allowing b to ever equal a.

