SEPTEMBER 11 SUMMARY

Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.5

Keywords: exponential functions, logarithm functions, trigonometric functions

Exponential \& Logarithm Functions, Trigonometric Functions

- An exponential function with base $a>0$ is a function $P(x)=K a^{x}, K$ constant.
- A very important example occurs when $a=e=2.71828 \ldots$ (Euler's number)
- The graph of $P(x)=e^{x}$ passes HLT $\Longrightarrow P(x)$ has an inverse. We call this inverse the natural logarithm; denoted $\ln (x)$.
- Properties:

$$
e^{\ln (x)}=x, \quad \ln \left(e^{x}\right)=x
$$

and

$$
\ln (x)=c \quad \Leftrightarrow \quad x=e^{c}
$$

- domain of $\ln (x)=$ range of $e^{x}=$ positive real numbers.
- range of $\ln (x)=$ domain of $e^{x}=\mathbb{R}$.

- Fact: for any $a>0$, there's constant r satisfying $a^{x}=e^{r x}$

Why? $a=e^{\ln (a)} \Longrightarrow a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) x}$ i.e. take $r=\ln (a)$.

- Some log rules: Let

$$
\begin{aligned}
\ln (A)=c & \Leftrightarrow A=e^{c} \\
\ln (B)=d & \Leftrightarrow B=e^{d}
\end{aligned}
$$

Set

$$
\ln (A B)=z \quad \Leftrightarrow \quad A B=e^{z} \quad \Leftrightarrow \quad e^{c} e^{d}=e^{z} \quad \Leftrightarrow \quad e^{c+d}=e^{z}
$$

Apply \ln to last equation:

$$
c+d=\ln \left(e^{c+d}\right)=\ln \left(e^{z}\right)=z \quad \Longrightarrow \quad \ln (A)+\ln (B)=\ln (A B)
$$

- Can also show

$$
\begin{gathered}
\ln \left(A^{r}\right)=r \ln (A) \\
\ln \left(\frac{A}{B}\right)=\ln (A)-\ln (B)
\end{gathered}
$$

Trigonometric functions:

- x measured in radians:

The length of the arc of the unit circle is equal to the angle (measured in radians) that it subtends with the horizontal.

Graph of $f(x)=\sin (x)$ does not pass HLT. However, if we restrict domain to $-\pi / 2 \leq$ $x \leq \pi / 2$ then it does:

Call inverse function $\arcsin (x)$:

$$
\begin{gathered}
\sin (\arcsin (x))=x, \quad \arcsin (\sin (x))=x \\
\arcsin (x)=y \quad \Leftrightarrow \quad x=\sin (y)
\end{gathered}
$$

In words, $\arcsin (x)$ is the angle (in radians) whose sine is x i.e. the arc whose sine is x

