

Contact: gwmelvin@colby.edu

September 11 Summary

SUPPLEMENTARY REFERENCES:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.5

KEYWORDS: exponential functions, logarithm functions, trigonometric functions

EXPONENTIAL & LOGARITHM FUNCTIONS, TRIGONOMETRIC FUNCTIONS

An exponential function with base a > 0 is a function P(x) = Ka^x, K constant.
A very important example occurs when a = e = 2.71828... (Euler's number)

• The graph of $P(x) = e^x$ passes HLT $\implies P(x)$ has an inverse. We call this inverse the *natural logarithm*; denoted $\ln(x)$.

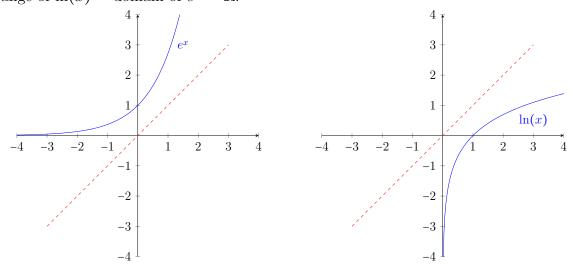
• Properties:

$$e^{\ln(x)} = x, \quad \ln(e^x) = x$$

and

$$\ln(x) = c \iff x = e^c$$

- domain of $\ln(x)$ = range of e^x = positive real numbers.
- range of $\ln(x) = \text{domain of } e^x = \mathbb{R}$.



• Fact: for any a > 0, there's constant r satisfying $a^x = e^{rx}$ Why? $a = e^{\ln(a)} \implies a^x = (e^{\ln(a)})^x = e^{\ln(a)x}$ i.e. take $r = \ln(a)$.

• Some log rules: Let

 $\ln(A) = c \quad \Leftrightarrow A = e^{c}$ $\ln(B) = d \quad \Leftrightarrow B = e^{d}$

Set

$$\ln(AB) = z \quad \Leftrightarrow \quad AB = e^z \quad \Leftrightarrow \quad e^c e^d = e^z \quad \Leftrightarrow \quad e^{c+d} = e^z$$

Apply ln to last equation:

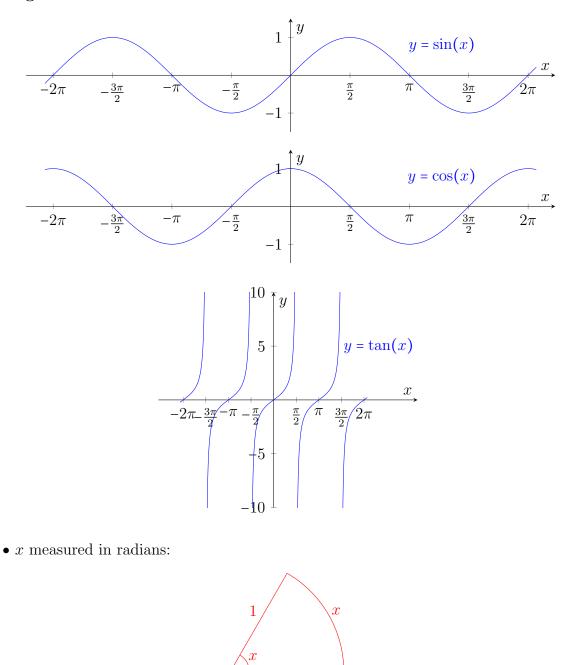
$$c + d = \ln(e^{c+d}) = \ln(e^z) = z \implies \ln(A) + \ln(B) = \ln(AB)$$

• Can also show

$$\ln(A^{r}) = r \ln(A)$$
$$\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)$$

,

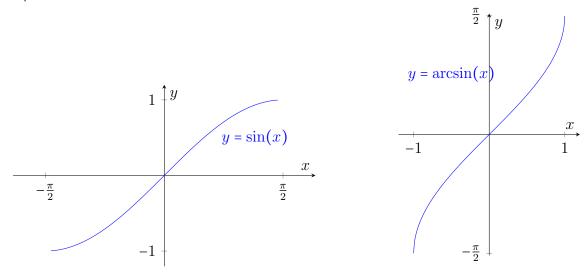
Trigonometric functions:



The length of the arc of the unit circle is equal to the angle (measured in radians) that it subtends with the horizontal.

Inverse trigonometric functions

Graph of $f(x) = \sin(x)$ does not pass HLT. However, if we restrict domain to $-\pi/2 \le x \le \pi/2$ then it does:



Call inverse function $\arcsin(x)$:

 $\sin(\arcsin(x)) = x$, $\arcsin(\sin(x)) = x$ $\arcsin(x) = y \iff x = \sin(y)$

In words, $\arcsin(x)$ is the angle (in radians) whose sine is x i.e. the arc whose sine is x

