Contact: gwmelvin@colby.edu

## September 10 Summary

## Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.4

Keywords: Horizontal Line Test, exponential functions, natural logarithm

## Horizontal Line Test; Exponential Functions

- Notation: $\mathbb{R}$ denotes the collection of all real numbers.
- Recall: $f(x)=\frac{1}{1-x}, g(x)=1-\frac{1}{x}$. Then,

$$
\begin{equation*}
f(g(x))=x, \quad \text { and } \quad g(f(x))=x \tag{*}
\end{equation*}
$$

i.e. $g(x)$ is the inverse of $f(x)$; write $g(x)=f^{-1}(x)$.



- Both graphs pass Horizontal Line Test (HLT): any horizontal line $y=L$ intersects the graph at most once. This is graphical interpretation of $(*)$.
- HLT provides criterion to check if a function $f(x)$ admits an inverse: if the graph $y=f(x)$ passes HLT then $f(x)$ has an inverse.
- Example:

1. $f(x)=x^{3}$, domain $=\mathbb{R}$.


The graph $y=f(x)$ passes HLT $\Longrightarrow f(x)$ has an inverse $f^{-1}(x)$. What is it? $f^{-1}$ is function that 'solves for $x$ : i.e. if $y=f(x)$ then $f^{-1}(y)=x$ i.e. $f^{-1}\left(x^{3}\right)=x$. Hence, $f^{-1}$ is the cube root function $f^{-1}(x)=\sqrt[3]{x}=x^{1 / 3}$.
2. $f(x)=x^{2}$, domain $=\mathbb{R}$.


Does not pass HLT $\Longrightarrow$ does not possess an inverse. Can remedy the situation: for example, restrict the domain to all nonnegative real numbers. Then, the graph of this new function is


This function passes HLT: $f(x)$ has inverse $f^{-1}(x)=\sqrt{x}$.

- If we restrict the domain to nonpositive real numbers then the graph is

and $f^{-1}(x)=-\sqrt{x}$.
- To get the graph of $f^{-1}(x)$ flip the graph $y=f(x)$ in the $y=x$ line:

- To determine $f^{-1}(x)$ algebraically: set $f(y)=x$ and solve for $y$ e.g. $f(x)=2(x+3)^{3}$

$$
x=f(y)=2(y+3)^{3} \Longrightarrow y=\sqrt[3]{\frac{x}{2}}-3 \quad \Longrightarrow \quad f^{-1}(x)=\sqrt[3]{\frac{x}{2}}-3
$$

## Exponential functions:

- any function of the form $P(x)=K a^{x}$, where $K$ constant, $a>0$, is called exponential function with base $a$
e.g. $P(x)=\frac{5^{x}}{2}$ is exponential with base 5 .
- Domain of any exponential function is $\mathbb{R}$.
- Remark: Require $a>0$ to ensure $P(x)$ is well-defined (e.g. to allow fractional inputs).
- If $a>1$ then exponential growth; if $0<a<1$ then exponential decay. Exponential functions model growth/decay of populations:
- growth/decay of bacteria,
- compound interest,
- radioactive decay.

- Euler's number $e=2.71828 \ldots$ plays important role in calculus. We will consider exponential functions with base $e$; exponential functions of the form $f(x)=e^{k x}$, where $k$ is a constant.

