Practice Midterm 2

Disclaimer: This Practice Midterm consists of problems of a similar difficulty as will be on the actual midterm. However, problems on the actual midterm may or may not be quite different in nature, and may or may not focus on different course material. However, the actual midterm will have a similar format: one true/false problem, one short-answer problem, three long-answer problems.

1. True/False (no justification required)
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln \left(x^{2}\right)}{x}=1$
(b) Let $f(x)=e^{x}+5$, where $-1 \leq x \leq 10$. Then, $x=10$ is a local maximum of $f(x)$.
(c) If $f^{\prime \prime}(p)=0$ then p is an inflection point.
(d) The linear approximation of $f(x)=\cos (x)$ at $x=\pi / 2$ is 0 .
(e) Let $y=\sin (\cos (x))$. Then, $\frac{d y}{d x}=\sin (\cos (x))+\cos (\sin (x))$.
2. (a) Let $g(t)=e^{\cos \left(t^{3}\right)}$. Determine $g^{\prime}(t)$.
(b) Let $y=(1-2 x)^{e^{x}}$. Using logarithmic differentiation, determine $\frac{d y}{d x}$.
3. A piece of wire having length 10 m is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle.
(a) Let x be the side length of the square. Show that the total area A of the square and triangle can be expressed as

$$
A=x^{2}+\frac{\sqrt{3}}{4}\left(\frac{10-4 x}{3}\right)^{2}
$$

Hint: the area of an equilateral triangle having side length a is $\frac{\sqrt{3}}{4} a^{2}$.
(b) Determine the side length of the square giving the largest possible area A.
4. At 1 pm ship A is 25 km due north of ship B. If Ship A is sailing west at a rate of $16 \mathrm{~km} / \mathrm{h}$ and ship B is sailing south at $20 \mathrm{~km} / \mathrm{h}$, find the rate at which the distance between the two ships is changing at 1.30 pm .
5. Let $f(x)=x e^{-x^{2}}$.
(a) Determine the local maxima/minima of $f(x)$.
(b) Determine the inflection points of $f(x)$.
(c) Using L'Hopital's Rule, show that $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$.
(d) Using what you've found, sketch the graph of $f(x)$.

