Practice Midterm 1: Solution

Disclaimer: This Practice Midterm consists of problems of a similar difficulty as will be on the actual midterm. However, problems on the actual midterm may or may not be quite different in nature, and may or may not focus on different course material. However, the actual midterm will have a similar format: one true/false problem, one short-answer problem, three long-answer problems.

1. True/False (no justification required)
(a) If $\lim _{x \rightarrow a} f(x)$ exists then $f^{\prime}(a)$ exists.
(b) If $\arcsin (x)=5$ then $x=\sin (5)$.
(c) If $f(5)=-1$ then $\lim _{x \rightarrow 5} f(x)=-1$.
(d) $\frac{d}{d x} x^{e}=x^{e}$.
(e) Let $f(x), g(x)$ be functions that are continuous at $x=1$. If $g(1)=1$ and $f(1)=-1$ then $\lim _{x \rightarrow 1} f(g(1))=-1$.

Solution:

(a) False
(b) True
(c) False
(d) False
(e) True
2. Compute $f^{\prime}(x)$ for the given function $f(x)$.
(a) $f(x)=\left(5 x^{2}+2 \sqrt[3]{x^{2}}\right) e^{x}+\pi^{e} \sin (x)$
(b) $f(x)=\frac{x^{12 / 5}-3 x+10}{e^{x}+e^{2 x}}$

Solution:

(a) Note: π^{e} is a constant.

$$
\begin{aligned}
& f(x)=u v+\pi^{e} \sin (x), \quad \text { where } u=5 x^{2}+2 \sqrt[3]{x^{2}}=5 x^{2}+2 x^{2 / 3}, v=e^{x} \\
\Longrightarrow & f^{\prime}(x)=u^{\prime} v+u v^{\prime}+\pi^{e} \cos (x), \quad \text { by Product Rule and } \frac{d}{d x} \sin (x)=\cos (x)
\end{aligned}
$$

Compute, using Power Rule,

$$
u^{\prime}=10 x+\frac{4}{3} x^{-1 / 3}, \quad v^{\prime}=e^{x}
$$

Hence,

$$
f^{\prime}(x)=e^{x}\left(5 x^{2}+10 x+2 x^{2 / 3}+\frac{4}{3} x^{-1 / 3}\right)+\pi^{e} \cos (x)
$$

(b) We use Quotient Rule

$$
f(x)=\frac{u}{v}, \quad \text { where } u=x^{12 / 5}-3 x+10, v=e^{x}+e^{2 x}
$$

Then,

$$
f^{\prime}(x)=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
$$

Compute

$$
u^{\prime}=\frac{12}{5} x^{7 / 5}-3, \quad v^{\prime}=e^{x}+2 e^{2 x}
$$

Therefore,

$$
f^{\prime}(x)=\frac{\left((12 / 5) x^{7 / 5}-3\right)\left(e^{x}+e^{2 x}\right)-\left(x^{12 / 5}-3 x+10\right)\left(e^{x}+2 e^{2 x}\right)}{\left(e^{x}+e^{2 x}\right)^{2}}
$$

3. Let k, l be constants.
(a) Using limit laws, or otherwise, determine

$$
\lim _{x \rightarrow 1} \frac{x^{2}+k x-2}{x^{2}+5 x-5}
$$

Note: your answer will be in terms of k.
(b) Define

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}+k x-2}{x^{2}+5 x-5}, \quad x \neq 1 \\
l, \quad x=1
\end{array}\right.
$$

Determine all values of k, l so that $f(x)$ is continuous at $x=1$. Be careful to justify why you know that $f(x)$ will continuous at $x=1$ for these values of k, l.

Solution:

(a) For any k the expression defines a function $g(x)=\frac{x^{2}+k x-2}{x^{2}+5 x-5}$ that is continuous everywhere in its domain. This domain contains $x=1$ since the denominator is not 0 when $x=1$. Hence,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+k x-2}{x^{2}+5 x-5}=g(1)=k-1
$$

(b) $f(x)$ is continuous at $x=1$ if $f(1)=\lim _{x \rightarrow 1} f(x)$. This requires

$$
l=f(1)=k-1
$$

Hence, $f(x)$ is continuous at $x=1$ whenever $l=k-1$.
4. Let $f(x)=\sqrt{2-x}$.
(a) What is the domain of $f(x)$?
(b) Use the limit definition of the derivative to show that $f^{\prime}(1)=-1 / 2$.
(c) Determine the tangent line to the graph $y=f(x)$ at $(1, f(1))$.

Solution:

(a) The domain of $f(x)$ is the collection all real numbers x satisfying $x \leq 2$.
(b) We compute

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=
$$

We have

$$
\begin{gathered}
\frac{f(1+h)-f(1)}{h}=\frac{\sqrt{1-h}-1}{h}=\frac{\sqrt{1-h}-1}{h} \cdot \frac{\sqrt{1-h}+1}{\sqrt{1-h}+1} \\
=\frac{1-h-1}{h(\sqrt{1-h}+1)}=\frac{-1}{\sqrt{1-h}+1}
\end{gathered}
$$

Then, this last expression is continuous in h and defined at $h=0$; hence,

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1-h}+1}=\frac{-1}{2}
$$

(c) The tangent line at $(1, f(1))=(1,1)$ is given by the formula

$$
y-1=\frac{-1}{2}(x-1) \quad \Longrightarrow \quad y=-\frac{x}{2}+\frac{3}{2}
$$

5. (a) Let $h(t)$ be a function with derivative $h^{\prime}(t)$. Show that

$$
\frac{d}{d t}(h(t))^{2}=2 h^{\prime}(t) h(t)
$$

(b) Use (a) to compute $\frac{d}{d t} \sqrt{e^{t}-t^{2}}$.

Solution:

(a) Using the product rule, we obtain

$$
\frac{d}{d t}(h(t))^{2}=\frac{d}{d t} h(t) \cdot h(t)=h^{\prime}(t) h(t)+h(t) h^{\prime}(t)=2 h^{\prime}(t) h(t)
$$

(b) Let $h(t)=\sqrt{e^{t}-t^{2}}$. Then, $(h(t))^{2}=e^{t}-t^{2}$. Hence, by (a)

$$
\begin{aligned}
e^{t}-2 t & =\frac{d}{d t}(h(t))^{2}=2 h^{\prime}(t)\left(\sqrt{e^{t}-t^{2}}\right) \\
& \Longrightarrow \quad h^{\prime}(t)=\frac{e^{t}-2 t}{2 \sqrt{e^{t}-t^{2}}}
\end{aligned}
$$

