Practice Midterm 1

Disclaimer: This Practice Midterm consists of problems of a similar difficulty as will be on the actual midterm. However, problems on the actual midterm may or may not be quite different in nature, and may or may not focus on different course material. However, the actual midterm will have a similar format: one true/false problem, one short-answer problem, three long-answer problems.

1. True/False (no justification required)
(a) If $\lim _{x \rightarrow a} f(x)$ exists then $f^{\prime}(a)$ exists.
(b) If $\arcsin (x)=5$ then $x=\sin (5)$.
(c) If $f(5)=-1$ then $\lim _{x \rightarrow 5} f(x)=-1$.
(d) $\frac{d}{d x} x^{e}=x^{e}$.
(e) Let $f(x), g(x)$ be functions that are continuous at $x=1$. If $g(1)=1$ and $f(1)=-1$ then $\lim _{x \rightarrow 1} f(g(x))=-1$.
2. Compute $f^{\prime}(x)$ for the given function $f(x)$.
(a) $f(x)=\left(5 x^{2}+2 \sqrt[3]{x^{2}}\right) e^{x}+\pi^{e} \sin (x)$
(b) $f(x)=\frac{x^{12 / 5}-3 x+10}{e^{x}+e^{2 x}}$
3. Let k, l be constants.
(a) Using limit laws, or otherwise, determine

$$
\lim _{x \rightarrow 1} \frac{x^{2}+k x-2}{x^{2}+5 x-5}
$$

Note: your answer will be in terms of k.
(b) Define

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}+k x-2}{x^{2}+5 x-5}, \quad x \neq 1 \\
l, \quad x=1
\end{array}\right.
$$

Determine all values of k, l so that $f(x)$ is continuous at $x=1$. Be careful to justify why you know that $f(x)$ will continuous at $x=1$ for these values of k, l.
4. Let $f(x)=\sqrt{2-x}$.
(a) What is the domain of $f(x)$?
(b) Use the limit definition of the derivative to show that $f^{\prime}(1)=-1 / 2$.
(c) Determine the tangent line to the graph $y=f(x)$ at $(1, f(1))$.
5. (a) Let $h(t)$ be a function with derivative $h^{\prime}(t)$. Show that

$$
\frac{d}{d t}(h(t))^{2}=2 h^{\prime}(t) h(t)
$$

(b) Use (a) to compute $\frac{d}{d t} \sqrt{e^{t}-t^{2}}$.

