

MIDTERM PRACTICE PROBLEMS

The problems on the midterm will not be as long/difficult as the following problems. These problems are intended to give you practice proving and computing things.

Throughout these problems G denotes a finite group, V a finite dimensional vector space over \mathbb{C} .

1. While the statement of this problem holds, the proof is a bit harder than anticipated so feel free to disregard... Sorry! Let (ρ, V) be a representation of G. Show that

$$\ker \chi_{\rho} \stackrel{def}{=} \{g \in G \mid \chi_{\rho}(g) = \deg \rho\} \subset G$$

is a normal subgroup.

2. Let $N \subset G$ be a normal subgroup and let H = G/N. Denote the quotient homomorphism

$$\pi_N: G \to H , g \mapsto gN$$

- (a) Let (φ, W) be a representation of H. Show that $\rho = \varphi \circ \pi_N$ is a representation of G. This should be very straightforward!
- (b) Let $G = S_3$, $N = \{e, (123), (132)\}$. Show that N is normal in G.
- (c) Show that $G/N \simeq \mathbb{Z}/2\mathbb{Z}$.
- (d) Let $\varphi' : \mathbb{Z}/2\mathbb{Z} \to \operatorname{GL}(\mathbb{C})$ be the (unique) nontrivial irreducible representation. Compute the character $\chi_{\rho'}$ of $\rho' = \varphi' \circ \pi_N$.
- (e) Explain in two different ways why ρ' is irreducible. (One way requires one sentence, the other involves characters)
- (f) Now let φ be the standard representation of $\mathbb{Z}/2\mathbb{Z}$. Is the representation $\rho = \varphi \circ \pi_N$ irreducible? (*Hint: characters might help!*)
- 3. Let ρ be a representation with the property that $\chi_{\rho}(g) = m_g \in \mathbb{Z}_{\geq 0}$, for every $g \in G$.
 - (a) Show that the trivial representation is an irreducible constituent of ρ .
 - (b) Show that |G| divides $\sum_{g \in G} \chi_{\rho}(g)$.
- 4. Let X be a nonempty set.
 - A homomorphism α : G → Perm(X) is called an action of G on X (we also say that G acts on X). Here Perm(X) = {f : X → X | f bijective} is the group of bijections on X. In particular, a representation (ρ, V) of G is an action of G on V.
 - We define $\mathbb{C}[X] = \{f : X \to \mathbb{C}\}$, the set of all \mathbb{C} -valued functions on X. In particular, when X = G we recover the group algebra. It can be shown that $\mathbb{C}[X]$ is a vector space over \mathbb{C} .

Assume for the remainder of this problem that X is finite. In this case, $\mathbb{C}[X]$ has dimension |X|: a basis is given by $\{e_x \mid x \in X\}$, where

$$e_x(y) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$$

The proof is exactly the same as the proof used to determine the dimension of $\mathbb{C}[G]$.

(a) Let $\alpha : G \to \operatorname{Perm}(X)$ be a group action. Show that

$$\rho_{\alpha}: G \to \operatorname{GL}(\mathbb{C}[X]), \ g \mapsto (\rho_{\alpha})_g$$

where, for any $f \in \mathbb{C}[X]$,

$$((\rho_{\alpha})_g(f))(x) = f(\alpha(g^{-1})(x))$$

defines a representation of G.

- (b) Let $g \in G, x \in X$. Show that $(\rho_{\alpha})_g(e_x) = e_{\alpha(g)(x)}$.
- (c) Let $v = \sum_{x \in X} e_x$. Show that $\operatorname{span}(v) \subset \mathbb{C}[X]$ is a subrepresentation. Hence, deduce that $\mathbb{C}[X]$ is not irreducible.
- 5. Consider the representation of D_8

$$\psi: D_8 \to \operatorname{GL}_2(\mathbb{C})$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ s & \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Consider the square having vertices $(\pm 1, 0), (0, \pm 1)$. Let L_x, L_y denote the x- and y-axis respectively. Define $X = \{L_x, L_y\}$ and write $e_x = e_{L_x}, e_y = e_{L_y} \in \mathbb{C}[X]$. Set $B = \{e_x, e_y\} \subset \mathbb{C}[X]$. Observe that ψ_x, ψ_y preserve X:

Observe that
$$\psi_r$$
, ψ_s preserve X:

$$\psi_r(L_x) = L_y, \ \psi_r(L_y) = L_x$$
 and $\psi_s(L_x) = L_x, \ \psi_s(L_y).$

Hence, ψ induces an action α of D_8 on X: by construction, $\alpha(r), \alpha(s)$ are the permutations of X given above and $\alpha(s^i r^j) = \alpha(s)^i \alpha(r)^j$ is the composition of the corresponding permutations given above. That this is well-defined (i.e. α is a homomorphism) follows because α is determined by the homomorphism ψ and the fact that ψ_g is **linear**.

You can visualise this action by thinking about how ψ_g , for $g \in G$, permutes the x- and y-axes. Denote the resulting representation on $\mathbb{C}[X]$ by ψ_{α} .

(a) Using (b) in the previous Problem, show that

$$[(\psi_{\alpha})_r]_B = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \qquad [(\psi_{\alpha})_s]_B = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

- (b) Compute the character of ψ_{α} .
- (c) Show that ψ_{α} is not irreducible.
- (d) Show that the trivial representation triv : $D_8 \to \operatorname{GL}(\mathbb{C})$ is an irreducible constituent of ψ_{α} . (*Hint: compute* χ_{triv} and determine the multiplicity of triv in ψ_{α})