Midterm Practice Problems

The problems on the midterm will not be as long/difficult as the following problems. These problems are intended to give you practice proving and computing things.

Throughout these problems G denotes a finite group, V a finite dimensional vector space over \mathbb{C}.

1. While the statement of this problem holds, the proof is a bit harder than anticipated so feel free to disregard... Sorry! Let (ρ, V) be a representation of G. Show that

$$
\operatorname{ker} \chi_{\rho} \stackrel{\text { def }}{=}\left\{g \in G \mid \chi_{\rho}(g)=\operatorname{deg} \rho\right\} \subset G
$$

is a normal subgroup.
2. Let $N \subset G$ be a normal subgroup and let $H=G / N$. Denote the quotient homomorphism

$$
\pi_{N}: G \rightarrow H, g \mapsto g N
$$

(a) Let (φ, W) be a representation of H. Show that $\rho=\varphi \circ \pi_{N}$ is a representation of G. This should be very straighforward!
(b) Let $G=S_{3}, N=\{e,(123),(132)\}$. Show that N is normal in G.
(c) Show that $G / N \simeq \mathbb{Z} / 2 \mathbb{Z}$.
(d) Let $\varphi^{\prime}: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathrm{GL}(\mathbb{C})$ be the (unique) nontrivial irreducible representation. Compute the character $\chi_{\rho^{\prime}}$ of $\rho^{\prime}=\varphi^{\prime} \circ \pi_{N}$.
(e) Explain in two different ways why ρ^{\prime} is irreducible. (One way requires one sentence, the other involves characters)
(f) Now let φ be the standard representation of $\mathbb{Z} / 2 \mathbb{Z}$. Is the representation $\rho=\varphi \circ \pi_{N}$ irreducible? (Hint: characters might help!)
3. Let ρ be a representation with the property that $\chi_{\rho}(g)=m_{g} \in \mathbb{Z}_{\geq 0}$, for every $g \in G$.
(a) Show that the trivial representation is an irreducible constituent of ρ.
(b) Show that $|G|$ divides $\sum_{g \in G} \chi_{\rho}(g)$.
4. Let X be a nonempty set.

- A homomorphism $\alpha: G \rightarrow \operatorname{Perm}(X)$ is called an action of G on X (we also say that G acts on X). Here $\operatorname{Perm}(X)=\{f: X \rightarrow X \mid f$ bijective $\}$ is the group of bijections on X. In particular, a representation (ρ, V) of G is an action of G on V.
- We define $\mathbb{C}[X]=\{f: X \rightarrow \mathbb{C}\}$, the set of all \mathbb{C}-valued functions on X. In particular, when $X=G$ we recover the group algebra. It can be shown that $\mathbb{C}[X]$ is a vector space over \mathbb{C}.

Assume for the remainder of this problem that X is finite. In this case, $\mathbb{C}[X]$ has dimension $|X|$: a basis is given by $\left\{e_{x} \mid x \in X\right\}$, where

$$
e_{x}(y)= \begin{cases}1, & x=y \\ 0, & x \neq y\end{cases}
$$

The proof is exactly the same as the proof used to determine the dimension of $\mathbb{C}[G]$.
(a) Let $\alpha: G \rightarrow \operatorname{Perm}(X)$ be a group action. Show that

$$
\rho_{\alpha}: G \rightarrow \mathrm{GL}(\mathbb{C}[X]), g \mapsto\left(\rho_{\alpha}\right)_{g}
$$

where, for any $f \in \mathbb{C}[X]$,

$$
\left(\left(\rho_{\alpha}\right)_{g}(f)\right)(x)=f\left(\alpha\left(g^{-1}\right)(x)\right)
$$

defines a representation of G.
(b) Let $g \in G, x \in X$. Show that $\left(\rho_{\alpha}\right)_{g}\left(e_{x}\right)=e_{\alpha(g)(x)}$.
(c) Let $v=\sum_{x \in X} e_{x}$. Show that $\operatorname{span}(v) \subset \mathbb{C}[X]$ is a subrepresentation. Hence, deduce that $\mathbb{C}[X]$ is not irreducible.
5. Consider the representation of D_{8}

$$
\begin{aligned}
\psi: D_{8} & \rightarrow \\
r & \mapsto
\end{aligned} \mathrm{GL}_{2}(\mathbb{C}),\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
s & \mapsto
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Consider the square having vertices $(\pm 1,0),(0, \pm 1)$. Let L_{x}, L_{y} denote the x - and y-axis respectively. Define $X=\left\{L_{x}, L_{y}\right\}$ and write $e_{x}=e_{L_{x}}, e_{y}=e_{L_{y}} \in \mathbb{C}[X]$. Set $B=\left\{e_{x}, e_{y}\right\} \subset \mathbb{C}[X]$.
Observe that ψ_{r}, ψ_{s} preserve X :

$$
\psi_{r}\left(L_{x}\right)=L_{y}, \psi_{r}\left(L_{y}\right)=L_{x} \quad \text { and } \quad \psi_{s}\left(L_{x}\right)=L_{x}, \psi_{s}\left(L_{y}\right)
$$

Hence, ψ induces an action α of D_{8} on X : by construction, $\alpha(r), \alpha(s)$ are the permutations of X given above and $\alpha\left(s^{i} r^{j}\right)=\alpha(s)^{i} \alpha(r)^{j}$ is the composition of the corresponding permutations given above. That this is well-defined (i.e. α is a homomorphism) follows because α is determined by the homomorphism ψ and the fact that ψ_{g} is linear.
You can visualise this action by thinking about how ψ_{g}, for $g \in G$, permutes the x - and y-axes. Denote the resulting representation on $\mathbb{C}[X]$ by ψ_{α}.
(a) Using (b) in the previous Problem, show that

$$
\left[\left(\psi_{\alpha}\right)_{r}\right]_{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\left(\psi_{\alpha}\right)_{s}\right]_{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) Compute the character of ψ_{α}.
(c) Show that ψ_{α} is not irreducible.
(d) Show that the trivial representation triv : $D_{8} \rightarrow \mathrm{GL}(\mathbb{C})$ is an irreducible constituent of ψ_{α}. (Hint: compute $\chi_{\text {triv }}$ and determine the multiplicity of triv in ψ_{α})

