

MARCH 8: MASCHKE'S THEOREM

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C} .

Lemma (6.1): Let V be a finite dimensional vector space over \mathbb{C} . Then, V admits an inner product.

Proof: Choose a basis $B \subseteq V$. Define

$$\langle,\rangle: V \times V \to \mathbb{C}$$

via the formula

$$\langle u, v \rangle = \langle [u]_B, [v]_B \rangle_s$$

where \langle , \rangle_s denotes the standard inner product on \mathbb{C}^k $(k = \dim V)$. Let's check that this defines an inner product on V: let $u, v, w \in V, \lambda, \mu \in \mathbb{C}$.

1.

$$\begin{split} \langle \lambda u + \mu v, w \rangle &= \langle [\lambda u + \mu v]_B, [w]_B \rangle_s \\ &= \langle \lambda [u]_B + \mu [v]_B, [w]_B \rangle_s \\ &= \lambda \langle [u]_B, [w]_B \rangle_s + \mu \langle [v]_B, [w]_B \rangle_s \\ &= \lambda \langle u, w \rangle + \mu \langle v, w \rangle \end{split}$$

2.
$$\langle u, v \rangle = \langle [u]_B, [v]_B \rangle_s = \overline{\langle [v]_B, [u]_B \rangle_s} = \overline{\langle v, u \rangle}$$

3. $\langle u, u \rangle = \langle [u]_B, [u]_B \rangle_s \ge 0$ and $\langle u, u \rangle = 0$ if and only if $\langle [u]_B, [u]_B \rangle_s = 0$ if and only if $[u]_B = \underline{0}$ if and only if $u = 0_V$.

QED

Proposition (6.2): Let (ρ, V) be a nonzero representation of a finite group G. Then, there exists an inner product on V with respect to which ρ is unitary.

Proof: Let \langle,\rangle be an inner product on V, which exists by Lemma 6.1. Define

$$[,]:V\times V\to \mathbb{C}\;,\;(u,v)\mapsto [u,v]=\sum_{g\in G}\langle\rho_g(u),\rho_g(v)\rangle$$

Then, [,] is an inner product on V: the proof of sesquilinearity is similar to the proof of Lemma 6.1. Also, we have

$$[u, u] = \sum_{g \in G} \langle \rho_g(u), \rho_g(u) \rangle \ge 0$$

and [u, u] = 0 if and only if each term of the above sum equals 0. In particular, $0 = \langle \rho_e(u), \rho_e(u) \rangle = \langle u, u \rangle$ if and only if $u = 0_V$. Let's show that [,] is an inner product for which ρ_g is unitary, for every $g \in G$. Indeed, for $u, v \in V, g \in G$,

$$[\rho_g(u), \rho_g(v)] = \sum_{h \in G} \langle \rho_h(\rho_g(u)), \rho_h(\rho_g(v)) \rangle = \sum_{h \in G} \langle \rho_{hg}(u), \rho_{hg}(v) \rangle$$

Recall that $r_g: G \to G$, $h \mapsto hg$ is a bijection on G. Hence, the right-hand sum above is a permutation of $\sum_{h \in G} \langle \rho_h(u), \rho_h(v) \rangle$. Hence, ρ_g is unitary, for every $g \in G$.

QED

Corollary (6.3): (Maschke's Theorem)

Let (ρ, V) be a nonzero representation of the finite group G. Then, ρ is completely reducible.

Proof: By Proposition 6.2, we can choose an inner product on V with respect to which ρ is unitary. The result follows from Corollary 5.5.

QED

SECTION III: G-MORPHISMS

Definition (6.4): Let (ρ, V) , (φ, W) be representations of G. A *G*-morphism from ρ to φ (or from V to W) is a linear map $T: V \to W$ such that

$$T \circ \rho_q = \varphi_q \circ T,$$
 for every $g \in G$

This means that, for every $v \in V$, $g \in G$,

$$T(\rho_g(v)) = \varphi_g(T(v)).$$