March 8: Maschke's Theorem

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Lemma (6.1): Let V be a finite dimensional vector space over \mathbb{C}. Then, V admits an inner product.

Proof: Choose a basis $B \subseteq V$. Define

$$
\langle,\rangle: V \times V \rightarrow \mathbb{C}
$$

via the formula

$$
\langle u, v\rangle=\left\langle[u]_{B},[v]_{B}\right\rangle_{s}
$$

where \langle,\rangle_{s} denotes the standard inner product on $\mathbb{C}^{k}(k=\operatorname{dim} V)$. Let's check that this defines an inner product on V : let $u, v, w \in V, \lambda, \mu \in \mathbb{C}$.
1.

$$
\begin{aligned}
\langle\lambda u+\mu v, w\rangle & =\left\langle[\lambda u+\mu v]_{B},[w]_{B}\right\rangle_{s} \\
& =\left\langle\lambda[u]_{B}+\mu[v]_{B},[w]_{B}\right\rangle_{s} \\
& =\lambda\left\langle[u]_{B},[w]_{B}\right\rangle_{s}+\mu\left\langle[v]_{B},[w]_{B}\right\rangle_{s} \\
& =\lambda\langle u, w\rangle+\mu\langle v, w\rangle
\end{aligned}
$$

2. $\langle u, v\rangle=\left\langle[u]_{B},[v]_{B}\right\rangle_{s}=\overline{\left\langle[v]_{B},[u]_{B}\right\rangle_{s}}=\overline{\langle v, u\rangle}$
3. $\langle u, u\rangle=\left\langle[u]_{B},[u]_{B}\right\rangle_{s} \geq 0$ and $\langle u, u\rangle=0$ if and only if $\left\langle[u]_{B},[u]_{B}\right\rangle_{s}=0$ if and only if $[u]_{B}=\underline{0}$ if and only if $u=0_{V}$.

QED
Proposition (6.2): Let (ρ, V) be a nonzero representation of a finite group G. Then, there exists an inner product on V with respect to which ρ is unitary.

Proof: Let \langle,$\rangle be an inner product on V$, which exists by Lemma 6.1. Define

$$
[,]: V \times V \rightarrow \mathbb{C},(u, v) \mapsto[u, v]=\sum_{g \in G}\left\langle\rho_{g}(u), \rho_{g}(v)\right\rangle
$$

Then, [,] is an inner product on V : the proof of sesquilinearity is similar to the proof of Lemma 6.1. Also, we have

$$
[u, u]=\sum_{g \in G}\left\langle\rho_{g}(u), \rho_{g}(u)\right\rangle \geq 0
$$

and $[u, u]=0$ if and only if each term of the above sum equals 0 . In particular, $0=\left\langle\rho_{e}(u), \rho_{e}(u)\right\rangle=\langle u, u\rangle$ if and only if $u=0_{V}$.

Let's show that [,] is an inner product for which ρ_{g} is unitary, for every $g \in G$. Indeed, for $u, v \in V, g \in G$,

$$
\left[\rho_{g}(u), \rho_{g}(v)\right]=\sum_{h \in G}\left\langle\rho_{h}\left(\rho_{g}(u)\right), \rho_{h}\left(\rho_{g}(v)\right)\right\rangle=\sum_{h \in G}\left\langle\rho_{h g}(u), \rho_{h g}(v)\right\rangle
$$

Recall that $r_{g}: G \rightarrow G, h \mapsto h g$ is a bijection on G. Hence, the right-hand sum above is a permutation of $\sum_{h \in G}\left\langle\rho_{h}(u), \rho_{h}(v)\right\rangle$. Hence, ρ_{g} is unitary, for every $g \in G$.

QED
Corollary (6.3): (Maschke's Theorem)
Let (ρ, V) be a nonzero representation of the finite group G. Then, ρ is completely reducible.

Proof: By Proposition 6.2, we can choose an inner product on V with respect to which ρ is unitary. The result follows from Corollary 5.5.

QED
SECTION III: G-mORPHISMS
Definition (6.4): Let $(\rho, V),(\varphi, W)$ be representations of G. A G-morphism from ρ to φ (or from V to W) is a linear map $T: V \rightarrow W$ such that

$$
T \circ \rho_{g}=\varphi_{g} \circ T, \quad \text { for every } g \in G
$$

This means that, for every $v \in V, g \in G$,

$$
T\left(\rho_{g}(v)\right)=\varphi_{g}(T(v))
$$

