March 6: Maschke's Theorem

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Section II: Maschke's Theorem

In this section we will prove one of the fundamental results in the representation theory of finite groups - Maschke's Theorem. This theorem states that, for the representation theory of finite groups (defined over \mathbb{C}), irreducibility and indecomposability coincide.
Definition (5.1): Let $(V,\langle\rangle$,$) be an inner product space, \rho: G \rightarrow \mathrm{GL}(V)$ a representation of G. We say that ρ is unitary if ρ_{g} is unitary, for every $g \in G$. This means, for every $g \in G, u, v \in V,\left\langle\rho_{g}(u), \rho_{g}(v)\right\rangle=\langle u, v\rangle$.
Example (5.2):

1. Any degree 1 representation $\rho: G \rightarrow \mathrm{GL}(\mathbb{C})$ is unitary: here \mathbb{C} is equipped with the standard inner product.
2. The representation

$$
\begin{aligned}
\left.\rho: \begin{array}{rl}
D_{8} & \rightarrow \\
r & \mapsto L_{2}(\mathbb{C}) \\
r & \mapsto\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \\
s & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{array} . \begin{array}{l}
\end{array}\right) \\
\end{aligned}
$$

is unitary. Indeed,

$$
\begin{aligned}
\left\langle\rho_{r}\left(\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]\right), \rho_{r}\left(\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right)\right\rangle & =\left\langle\left[\begin{array}{c}
i a_{1} \\
-i a_{2}
\end{array}\right],\left[\begin{array}{c}
i b_{1} \\
-i b_{2}
\end{array}\right]\right\rangle \\
& =i a_{1} \overline{\left(i b_{1}\right)}+\left(-i a_{2}\right) \overline{\left(-i b_{2}\right)} \\
& =a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2} \\
& =\left\langle\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle
\end{aligned}
$$

A similar calculation shows ρ_{s} is unitary.
3. The representation

$$
\rho: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \bar{j} \mapsto\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]^{j}
$$

is not unitary: we have $\rho_{\overline{1}}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. Since

$$
\left\|\rho_{\overline{1}}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)\right\|^{2}=1 \neq 2=\left\|\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|^{2}
$$

we conclude that $\rho_{\overline{1}}$ is not unitary.

Proposition (5.3): Let (ρ, V) be a nonzero unitary representation. Then, either ρ is irreducible or decomposable.

Proof: Suppose that ρ is not irreducible. Then, there exists a nonzero proper subrepresentation $W \subseteq V$.
Claim: W^{\perp} is a subrepresentation.
Indeed, let $g \in G, w \in W^{\perp}$. Then, for any $u \in W$,

$$
\begin{aligned}
\left\langle u, \rho_{g}(w)\right\rangle & =\left\langle\rho_{g^{-1}}(u), \rho_{g^{-1}}\left(\rho_{g}(w)\right\rangle\right. \\
& =\left\langle\rho_{g^{-1}}(u), w\right\rangle \\
& =0, \quad \text { since } \rho_{g^{-1}}(u) \in W \text { and } w \in W^{\perp}
\end{aligned}
$$

Hence, $\rho_{g}(w) \in W^{\perp}$. Moreover, $\rho \simeq \rho_{\left.\right|_{W}} \oplus \rho_{\left.\right|_{W^{\perp}}}$: we have a G-isomorphism

$$
T: W \times W^{\perp} \rightarrow V,(w, u) \mapsto w+u
$$

- T is a linear isomorphism by Homework.
- we have

$$
T\left(\rho_{\left.\right|_{W}} \oplus \rho_{\left.\right|_{W^{\perp}}}(w, u)\right)=T\left(\rho_{g}(w), \rho_{g}(u)\right)=\rho_{g}(w)+\rho_{g}(u)=\rho_{g}(w+u)=\rho_{g}(T(w, u))
$$

Remark (5.3): If $U, W \subseteq V$ are subrepresentations such that $V=U \oplus W$ (internal direct sum) then $\rho \simeq \rho_{\left.\right|_{U}} \oplus \rho_{\left.\right|_{W}}$

Corollary (5.5): (Maschke's Theorem for Unitary Representations)
Every nonzero unitary representation (ρ, V) is completely reducible.
Proof: Proceed by induction on $k=\operatorname{dim} V$.
($k=1$): any degree 1 representation is irreducible.
Assume the result for all $1 \leq k<r$. Let $k=\operatorname{dim} V=r$.

- If (ρ, V) is irreducible then we are done.
- Else, by Proposition 5.3, $\rho \simeq \rho_{1} \oplus \rho_{2}$. Hence, by induction, ρ_{1} and ρ_{2} are completely reducible

$$
\rho_{1} \simeq \varphi_{1} \oplus \cdots \oplus \varphi_{s}, \quad \rho_{2} \simeq \psi_{1} \oplus \cdots \oplus \psi_{t}
$$

with each φ_{i}, ψ_{j} irreducible. Then,

$$
\rho \simeq \varphi_{1} \oplus \cdots \oplus \varphi_{s} \oplus \psi_{1} \oplus \cdots \oplus \psi_{t}
$$

