March 4: Decomposability

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Example (4.1): Let $G=\mathbb{Z} / 4 \mathbb{Z}$. There is a homomorphism

$$
f: \mathbb{Z} / 4 \mathbb{Z} \rightarrow D_{8}, \bar{j} \mapsto r^{j}
$$

that gives rise to a degree 2 representation of $\mathbb{Z} / 4 \mathbb{Z}$:

$$
\rho: \mathbb{Z} / 4 \mathbb{Z} \rightarrow D_{8} \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \bar{j} \mapsto\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]^{j}
$$

Observe:

- $U=\operatorname{span}\left(\left[\begin{array}{l}1 \\ i\end{array}\right]\right)$ is a subrepresentation

$$
\rho(\bar{j})\left(\left[\begin{array}{l}
1 \\
i
\end{array}\right]\right)=(-i)^{j}\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

- $W=\operatorname{span}\left(\left[\begin{array}{c}1 \\ -i\end{array}\right]\right)$ is a subrepresentation

$$
\rho(\bar{j})\left(\left[\begin{array}{c}
1 \\
-i
\end{array}\right]\right)=i^{j}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

Define the degree 1 representations of $\mathbb{Z} / 4 \mathbb{Z}$:

$$
\begin{gathered}
\rho_{1}: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathrm{GL}(\mathbb{C}), \bar{j} \mapsto(-i)^{j} \\
\rho_{2}: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathrm{GL}(\mathbb{C}), \bar{j} \mapsto i^{j}
\end{gathered}
$$

Then, $\rho \simeq \rho_{1} \oplus \rho_{2}$ via the G-isomorphism

$$
T: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{2},(a, b) \mapsto\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=a\left[\begin{array}{l}
1 \\
i
\end{array}\right]+b\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

Indeed, we have

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]^{j}\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
(-i)^{j} & i^{j} \\
i \cdot(-i)^{j} & (-i) \cdot i^{j}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=(-i)^{j} a\left[\begin{array}{c}
1 \\
i
\end{array}\right]+i^{j} b\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

That is,

$$
\rho(\bar{j})(T(a, b))=T\left(\left(\rho_{1} \oplus \rho_{2}\right)(\bar{j})(a, b)\right)
$$

verifying that T is a G-isomorphism.

Remark (4.2): If $\rho \simeq \rho_{1} \oplus \rho_{2}$ then there exists a basis $B \subseteq V$ such that

$$
\left[\rho_{g}\right]_{B}=\left[\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right], \quad \text { for every } g \in G
$$

where the $*$ in the top left is $\operatorname{dim} V_{1} \times \operatorname{dim} V_{1}$, and the $*$ in the bottom right is $\operatorname{dim} V_{2} \times \operatorname{dim} V_{2}$. Namely, choose bases $B_{1} \subseteq V_{1}, B_{2} \subseteq V_{2}$ and let $T: V \rightarrow V_{1} \times V_{2}$ be a G-isomorphism. Then, $B=T^{-1}\left(B_{1} \times\{0\}\right) \cup T^{-1}\left(\{0\} \times B_{2}\right)$ is a basis with this property.

Conversely, if $B=\left(v_{1}, \ldots, v_{k}\right) \subseteq V$ is a basis such that
with $m+n=k$, then $\rho \simeq \rho_{\left.\right|_{U}} \oplus \rho_{\left.\right|_{\mid W}}$, where

$$
U=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right), \quad W=\operatorname{span}\left(v_{m+1}, \ldots, v_{m+n}\right)
$$

Definition (4.3): Let (ρ, V) be a nonzero representation of G. We say that ρ is decomposable if $\rho \simeq \rho_{1} \oplus \rho_{2}$, with each of ρ_{1}, ρ_{2} nonzero. Otherwise, we say that ρ is indecomposable.
Remark (4.4):

- Irreducible \Longrightarrow indecomposable.
- Completely reducible \Longrightarrow decomposable.

Interesting Example (4.5):

1. Let $G=\mathbb{Z}$. Then

$$
\rho: G \rightarrow \mathrm{GL}_{2}(\mathbb{C}), n \mapsto\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right]
$$

is a representation of \mathbb{Z}. However, $\operatorname{span}\left(e_{1}\right)$ is the only proper subrepresentation (i.e. one eigenvalue $\lambda=1$ with 1 -dim eigenspace). Hence, ρ is indecomposable but not irreducible.
2. Let $G=\mathbb{Z} / p \mathbb{Z}$. Define

$$
\rho: G \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right), \bar{j} \mapsto\left[\begin{array}{cc}
1 & \bar{j} \\
0 & 1
\end{array}\right]
$$

Similarly, $\operatorname{span}\left(e_{1}\right)$ is the only subrepresentation. Hence, ρ is indecomposable but not irreducible.

