March 20: Towards Schur Orthogonality

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.
Lemma (11.1): Let $\left(V,\langle,\rangle_{V}\right),\left(W,\langle,\rangle_{W}\right)$ be inner product spaces. Let (φ, V), (ρ, W) be unitary representations. Let $B \subseteq V, C \subseteq W$ be orthonormal bases, and $\left\{\varphi_{i j}\right\},\left\{\rho_{r s}\right\} \subseteq \mathbb{C}[G]$ be the corresponding matrix elements. Then,

$$
\left[\left(L_{r i}^{B, C}\right)^{\#}\right]_{B}^{C}=\left[\left\langle\varphi_{i j}, \rho_{r s}\right\rangle\right]_{s j}
$$

i.e. the s, j-entry of $\left[\left(L_{r i}^{B, C}\right)^{\#}\right]_{B}^{C}$ is $\left\langle\varphi_{i j}, \rho_{r s}\right\rangle$.

Proof: Let $B=\left(v_{1}, \ldots, v_{k}\right)$. To determine the $j^{\text {th }}$ column of $\left[\left(L_{r i}^{B, C}\right)^{\#}\right]_{B}^{C}$ we need to evaluate the following:

$$
\begin{aligned}
\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right) & =\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} L_{r i}^{B, C} \varphi_{g}\left(v_{j}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}\left(L_{r i}^{B, C}\left(\varphi_{g}\left(v_{j}\right)\right)\right)
\end{aligned}
$$

Since C is orthonormal,

$$
\left[\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right)\right]_{C}=\left[\begin{array}{c}
\left\langle\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right), w_{1}\right\rangle_{W} \\
\vdots \\
\left\langle\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right), w_{l}\right\rangle_{W}
\end{array}\right]
$$

For $s=1, \ldots, l$,

$$
\begin{aligned}
&\left\langle\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right), w_{s}\right\rangle_{W}=\frac{1}{|G|} \sum_{g \in G}\left\langle\rho_{g}-1\right. \\
&\left.\left.=\frac{1}{|G|} \sum_{g \in G}^{B, C}\left(\varphi_{g}\left(v_{j}\right)\right)\right), w_{s}\right\rangle_{W} \\
&\left\langle L_{r i}^{B, C}\left(\varphi_{g}\left(v_{j}\right)\right), \rho_{g}\left(w_{s}\right)\right\rangle_{W}, \quad \text { since } \rho \text { unitary. }
\end{aligned}
$$

By construction, if $\left[\varphi_{g}\left(v_{j}\right)\right]_{B}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{k}\end{array}\right]=\left[\begin{array}{c}\left\langle\varphi_{g}\left(v_{j}\right), v_{1}\right\rangle_{V} \\ \vdots \\ \left\langle\varphi_{g}\left(v_{j}\right), v_{k}\right\rangle_{V}\end{array}\right]$, then

$$
L_{r i}^{B, C}\left(\varphi_{g}\left(v_{j}\right)\right)=a_{i} w_{r}=\left\langle\varphi_{g}\left(v_{j}\right), v_{i}\right\rangle_{V} w_{r}
$$

Hence,

$$
\begin{aligned}
\left\langle\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right), w_{s}\right\rangle_{W} & =\frac{1}{|G|} \sum_{g \in G}\left\langle\left\langle\varphi_{g}\left(v_{j}\right), v_{i}\right\rangle_{V} w_{r}, \rho_{g}\left(w_{s}\right)\right\rangle_{W} \\
& =\frac{1}{|G|} \sum_{g \in G}\left\langle\varphi_{g}\left(v_{j}\right), v_{i}\right\rangle_{V}\left\langle w_{r}, \rho_{g}\left(w_{s}\right)\right\rangle_{W} \\
& =\frac{1}{|G|} \sum_{g \in G}\left\langle\varphi_{g}\left(v_{j}\right), v_{i}\right\rangle_{V} \overline{\left\langle\rho_{g}\left(w_{s}\right), w_{r}\right\rangle_{W}}
\end{aligned}
$$

Observe, if $L: V \rightarrow V$ is linear then the i, j entry of $[L]_{B}$ is $\left\langle L\left(v_{j}\right), v_{i}\right\rangle_{V}$. Similarly, if $K: W \rightarrow W$ is linear then the i, j-entry of $[K]_{C}$ is $\left\langle K\left(w_{j}\right), w_{i}\right\rangle_{W}$. Hence,

$$
\phi_{i j}(g)=\left\langle\varphi_{g}\left(v_{j}\right), v_{i}\right\rangle_{V}, \quad \rho_{r s}(g)=\left\langle\rho_{g}\left(w_{s}\right), w_{r}\right\rangle_{W}
$$

so that

$$
\left\langle\left(L_{r i}^{B, C}\right)^{\#}\left(v_{j}\right), w_{s}\right\rangle_{W}=\frac{1}{|G|} \sum_{g \in G} \varphi_{i j}(g) \overline{\rho_{r s}(g)}=\left\langle\varphi_{i j}, \rho_{r s}\right\rangle
$$

In particular, the s, j-entry of $\left[\left(L_{r i}^{B, C}\right)^{\#}\right]_{B}^{C}$ is $\left\langle\varphi_{i j}, \rho_{r s}\right\rangle$.
QED

Example (10.1): Let $G=D_{8}$ and consider the representation

$$
\begin{aligned}
\rho: D_{8} & \rightarrow \\
r & \mapsto\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \\
s & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Then, ρ is irreducible and unitary (with respect to the standard inner product on \mathbb{C}^{2}). We have

$$
\begin{aligned}
e \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], & & s \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
r \mapsto\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], & & s r \mapsto\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
r^{2} \mapsto\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], & & s r^{2} \mapsto\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \\
r^{3} \mapsto\left[\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right], & & s r^{3} \mapsto\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right]
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \rho_{11}-\text { picks out the } 1,1 \text {-entry } \\
& \rho_{12}-\text { picks out the } 1,2 \text {-entry }
\end{aligned}
$$

We compute
$\left\langle\rho_{11}, \rho_{12}\right\rangle=\frac{1}{8}(1 \cdot 0+i \cdot 0+(-1) \cdot 0+(-i) \cdot 0+0 \cdot 1+0 \cdot i+0 \cdot(-1)+0 \cdot(-i))=0$
and

$$
\left\langle\rho_{11}, \rho_{11}\right\rangle=\frac{1}{8}\left(|1|^{2}+|i|^{2}+|-1|^{2}+|-i|^{2}+0^{2}+0^{2}+0^{2}+0^{2}\right)=\frac{1}{2}
$$

Proposition (10.2): Let $\varphi: G \rightarrow \mathrm{GL}(V), \rho: G \rightarrow \mathrm{GL}(W)$ be representations of $G, T: V \rightarrow W$ a linear map (not necessarily a G-morphism). Define

$$
T^{\#}=\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} T \varphi_{g}: V \rightarrow W
$$

1. $T^{\#}$ is a G-morphism.
2. If $T \in \operatorname{Hom}_{G}(\varphi, \rho)$ then $T^{\#}=T$.
3. The function $P: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(V, W), T \mapsto T^{\#}$ is linear and im $P=$ $\operatorname{Hom}_{G}(V, W)$.

Proof:

1. Since $\rho_{g^{-1}} T \varphi_{g}: V \rightarrow W$, and $T^{\#}$ is a linear combination of these linear maps, $T^{\#}$ is linear.

Let $x \in G$. Then,

$$
\begin{aligned}
\rho_{x} T^{\#} & =\frac{1}{|G|} \sum_{g \in G} \rho_{x} \rho_{g^{-1}} T \varphi_{g} \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{x g^{-1}} T \varphi_{g x^{-1} x} \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{x g^{-1}} T \varphi_{g x^{-1}} \varphi_{x} \\
& =\left(\frac{1}{|G|} \sum_{g \in G} \rho_{x g^{-1}} T \varphi_{g x^{-1}}\right) \varphi_{x} \\
& =T^{\#} \varphi_{x}
\end{aligned}
$$

Here we use that $\frac{1}{|G|} \sum_{g \in G} \rho_{x g^{-1}} T \varphi_{g x^{-1}}$ is a rearrangement of the sum defining $T^{\#}$.
2. Suppose $T \in \operatorname{Hom}_{G}(\varphi, \rho)$. Then,

$$
\begin{aligned}
T^{\#} & =\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} T \rho_{g} \\
& =\frac{1}{|G|} \sum_{g \in G} T \rho_{g^{-1}} \rho_{g} \\
& =\frac{1}{|G|} \sum_{g \in G} T=T
\end{aligned}
$$

3. For $T, S \in \operatorname{Hom}(V, W)$,

$$
(T+S)^{\#}=\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}(T+S) \varphi_{g}=\frac{1}{|G|} \sum_{g \in G}\left(\rho_{g^{-1}} T \varphi_{g}+\rho_{g^{-1}} S \varphi_{g}\right)=T^{\#}+S^{\#}
$$

For $c \in \mathbb{C}, T \in \operatorname{Hom}(V, W)$,

$$
(c T)^{\#}=\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}(c T) \varphi_{g}=c\left(\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} T \varphi_{g}\right)=c T^{\#}
$$

Hence, P is linear. By (1) and (2), we have im $P=\operatorname{Hom}_{G}(V, W)$.
QED
Proposition (10.3): Let $\varphi: G \rightarrow \mathrm{GL}(V), \rho: G \rightarrow \mathrm{GL}(W)$ be irreducible representations, $T: V \rightarrow W$ a linear map. Then,

1. If φ and ρ are inequivalent then $T^{\#}=0$.
2. $I F \varphi=\rho$ then $T^{\#}=\frac{\operatorname{tr}(T)}{\operatorname{deg} \varphi} \mathrm{i} \mathrm{id}_{V}$.

Proof:

1. By $10.2,(1), T^{\#} \in \operatorname{Hom}_{G}(\varphi, \rho)$. Now, Schur's Lemma gives $T^{\#}=0$ since φ, ρ are inequivalent representations.
2. If $\varphi=\rho$ then $T=\operatorname{id}_{V}$, for some $\lambda \in \mathbb{C}$, by Schur's Lemma and 10.2, (1). Hence, we have

$$
\operatorname{tr}\left(T^{\#}\right)=\operatorname{tr}\left(\lambda \mathbb{I}_{\operatorname{deg} \varphi}\right)=\lambda \operatorname{deg} \varphi
$$

Also,

$$
\begin{aligned}
\operatorname{tr}\left(T^{\#}\right) & =\operatorname{tr}\left(\frac{1}{|G|} \sum_{g \in G} \varphi_{g^{-1}} T \varphi_{g}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left(\varphi_{g^{-1}} T \varphi_{g}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left(T \varphi_{g} \varphi_{g^{-1}}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(T)=\operatorname{tr}(T)
\end{aligned}
$$

Hence,

$$
\lambda \operatorname{deg} \varphi=\operatorname{tr}(T) \quad \Longrightarrow \quad T^{\#}=\frac{\operatorname{tr}(T)}{\operatorname{deg} \varphi} \operatorname{id}_{V}
$$

Remark (10.4): Let $B=\left(v_{1}, \ldots, v_{k}\right) \subseteq V, C=\left(w_{1}, \ldots, w_{l}\right) \subseteq W$ be bases. Define the linear map $L_{i j}^{B, C}: V \rightarrow W$ to be the unique linear map satisfying

$$
\left[L_{i j}^{B, C}\right]_{B}^{C}=E_{i j}
$$

where $E_{i j}$ is the $l \times k$ matrix with a 1 in the $i j$-entry and 0 s elsewhere. In particular, for $v \in V$, with $[v]_{B}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{k}\end{array}\right]$, we have $L_{i j}(v)=a_{j} w_{i}$.
Since the matrices $\left\{E_{i j} \mid 1 \leq i \leq l, 1 \leq j \leq k\right\}$ form a basis of the collection of all $l \times k$ matrices, the set $\left\{L_{i j}^{B, C} \mid 1 \leq i \leq l, 1 \leq j \leq k\right\}$ is a basis of $\operatorname{Hom}(V, W)$.

