

MARCH 18: TOWARDS SCHUR ORTHOGONALITY

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C} .

Example (10.1): Let $G = D_8$ and consider the representation

$$\rho: D_8 \to GL_2(\mathbb{C})$$
$$r \mapsto \begin{bmatrix} i & 0\\ 0 & -i \end{bmatrix}$$
$$s \mapsto \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

Then, ρ is irreducible and unitary (with respect to the standard inner product on \mathbb{C}^2). We have

$$e \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad s \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad sr \mapsto \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad sr^2 \mapsto \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
$$r^3 \mapsto \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}, \qquad sr^3 \mapsto \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$

Then,

 ρ_{11} – picks out the 1, 1-entry ρ_{12} – picks out the 1, 2-entry

We compute

$$\langle \rho_{11}, \rho_{12} \rangle = \frac{1}{8} \left(1 \cdot 0 + i \cdot 0 + (-1) \cdot 0 + (-i) \cdot 0 + 0 \cdot 1 + 0 \cdot i + 0 \cdot (-1) + 0 \cdot (-i) \right) = 0$$

and

$$\langle \rho_{11}, \rho_{11} \rangle = \frac{1}{8} \left(|1|^2 + |i|^2 + |-1|^2 + |-i|^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 \right) = \frac{1}{2}$$

Proposition (10.2): Let $\varphi : G \to \operatorname{GL}(V)$, $\rho : G \to \operatorname{GL}(W)$ be representations of $G, T : V \to W$ a linear map (not necessarily a G-morphism). Define

$$T^{\#} = \frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} T\varphi_g : V \to W$$

- 1. $T^{\#}$ is a *G*-morphism.
- 2. If $T \in \operatorname{Hom}_G(\varphi, \rho)$ then $T^{\#} = T$.

3. The function $P : \operatorname{Hom}(V, W) \to \operatorname{Hom}(V, W)$, $T \mapsto T^{\#}$ is linear and im $P = \operatorname{Hom}_{G}(V, W)$.

Proof:

1. Since $\rho_{g^{-1}}T\varphi_g: V \to W$, and $T^{\#}$ is a linear combination of these linear maps, $T^{\#}$ is linear.

Let $x \in G$. Then,

$$\rho_x T^{\#} = \frac{1}{|G|} \sum_{g \in G} \rho_x \rho_{g^{-1}} T \varphi_g$$
$$= \frac{1}{|G|} \sum_{g \in G} \rho_{xg^{-1}} T \varphi_{gx^{-1}x}$$
$$= \frac{1}{|G|} \sum_{g \in G} \rho_{xg^{-1}} T \varphi_{gx^{-1}} \varphi_x$$
$$= \left(\frac{1}{|G|} \sum_{g \in G} \rho_{xg^{-1}} T \varphi_{gx^{-1}}\right) \varphi_x$$
$$= T^{\#} \varphi_x$$

Here we use that $\frac{1}{|G|} \sum_{g \in G} \rho_{xg^{-1}} T \varphi_{gx^{-1}}$ is a rearrangement of the sum defining $T^{\#}$.

2. Suppose $T \in \operatorname{Hom}_{G}(\varphi, \rho)$. Then,

$$T^{\#} = \frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}} T \rho_g$$
$$= \frac{1}{|G|} \sum_{g \in G} T \rho_{g^{-1}} \rho_g$$
$$= \frac{1}{|G|} \sum_{g \in G} T = T$$

3. For $T, S \in \text{Hom}(V, W)$,

$$(T+S)^{\#} = \frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}(T+S)\varphi_g = \frac{1}{|G|} \sum_{g \in G} \left(\rho_{g^{-1}}T\varphi_g + \rho_{g^{-1}}S\varphi_g\right) = T^{\#} + S^{\#}$$

For $c \in \mathbb{C}$, $T \in \text{Hom}(V, W)$,

$$(cT)^{\#} = \frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}(cT)\varphi_g = c\left(\frac{1}{|G|} \sum_{g \in G} \rho_{g^{-1}}T\varphi_g\right) = cT^{\#}$$

Hence, P is linear. By (1) and (2), we have im $P = \text{Hom}_G(V, W)$.

QED

Proposition (10.3): Let $\varphi : G \to GL(V)$, $\rho : G \to GL(W)$ be irreducible representations, $T : V \to W$ a linear map. Then,

- 1. If φ and ρ are inequivalent then $T^{\#} = 0$.
- 2. IF $\varphi = \rho$ then $T^{\#} = \frac{\operatorname{tr}(T)}{\operatorname{deg} \varphi} \operatorname{id}_V$.

Proof:

- 1. By 10.2, (1), $T^{\#} \in \text{Hom}_{G}(\varphi, \rho)$. Now, Schur's Lemma gives $T^{\#} = 0$ since φ, ρ are inequivalent representations.
- 2. If $\varphi = \rho$ then $T = \lambda i d_V$, for some $\lambda \in \mathbb{C}$, by Schur's Lemma and 10.2, (1). Hence, we have

$$\operatorname{tr}(T^{\#}) = \operatorname{tr}(\lambda \mathbb{I}_{\deg \varphi}) = \lambda \deg \varphi$$

Also,

$$\operatorname{tr}(T^{\#}) = \operatorname{tr}\left(\frac{1}{|G|}\sum_{g\in G}\varphi_{g^{-1}}T\varphi_{g}\right)$$
$$= \frac{1}{|G|}\sum_{g\in G}\operatorname{tr}(\varphi_{g^{-1}}T\varphi_{g})$$
$$= \frac{1}{|G|}\sum_{g\in G}\operatorname{tr}(T\varphi_{g}\varphi_{g^{-1}})$$
$$= \frac{1}{|G|}\sum_{g\in G}\operatorname{tr}(T) = \operatorname{tr}(T)$$

Hence,

$$\lambda \deg \varphi = \operatorname{tr}(T) \implies T^{\#} = \frac{\operatorname{tr}(T)}{\deg \varphi} \operatorname{id}_{V}$$

Remark (10.4): Let $B = (v_1, \ldots, v_k) \subseteq V$, $C = (w_1, \ldots, w_l) \subseteq W$ be bases. Define the linear map $L_{ij}^{B,C}: V \to W$ to be the unique linear map satisfying

$$[L_{ij}^{B,C}]_B^C = E_{ij}$$

where E_{ij} is the $l \times k$ matrix with a 1 in the *ij*-entry and 0s elsewhere. In particular, for $v \in V$, with $[v]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}$, we have $L_{ij}(v) = a_j w_i$. Since the matrices $\{E_{ij} \mid 1 \leq i \leq l, 1 \leq i \leq k\}$ form a basis of the collection of all

Since the matrices $\{E_{ij} \mid 1 \leq i \leq l, 1 \leq j \leq k\}$ form a basis of the collection of all $l \times k$ matrices, the set $\{L_{ij}^{B,C} \mid 1 \leq i \leq l, 1 \leq j \leq k\}$ is a basis of Hom(V, W).