March 15: Group Algebra

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Proof of (8.5): (contd.)

- \mathcal{S} is linearly independent: suppose we have a linear relation

$$
\sum_{x \in G} a_{x} e_{x}=0_{\mathbb{C}[G]}, \quad \text { for some } a_{x} \in \mathbb{C}, x \in G
$$

Then, for each $y \in G$,

$$
\left(\sum_{x \in G} a_{x} e_{x}\right)(y)=0 \quad \Longrightarrow \quad \sum_{x \in G} a_{x} e_{x}(y)=0 \quad \Longrightarrow \quad a_{y}=0
$$

Hence, $a_{y}=0$, for every $y \in G$, and \mathcal{S} is linearly independent.

- Consider

$$
\langle,\rangle: \mathbb{C}[G] \times \mathbb{C}[G] \rightarrow \mathbb{C},(f, g) \mapsto \frac{1}{|G|} \sum_{x \in G} f(x) \overline{g(x)}
$$

Sesquilinearity of \langle,$\rangle is straightforward to show. For f \in \mathbb{C}[G]$ we have

$$
\langle f, f\rangle=\sum_{x \in G}|f(x)|^{2} \geq 0
$$

Moreover,

$$
\begin{aligned}
\langle f, f\rangle=0 & \Longleftrightarrow \quad|f(x)|^{2}=0, \quad \text { for every } x \in G \\
& \Longleftrightarrow \quad f(x)=0, \quad \text { for every } x \in G . \\
& \Longleftrightarrow \quad f=0_{\mathbb{C}[G]}, \quad \text { is the zero function. }
\end{aligned}
$$

QED
Remark (9.1): Let $\rho: G \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ be a matrix representation of G. Denote the $i j$-entry of ρ_{g} by $\rho_{i j}(g)$. Then, $\rho_{i j}: G \rightarrow \mathbb{C}$ is a function i.e. $\rho_{i j} \in \mathbb{C}[G]$. We call $\rho_{i j}$ a matrix element of ρ (or matrix coefficient of ρ).

Recall the unitary group of $k \times k$ matrices

$$
U_{k}(\mathbb{C})=\left\{A \in M_{k}(\mathbb{C}) \mid A^{-1}=\bar{A}^{t}\right\}
$$

This is the group of all matrices such that $\langle A u, A v\rangle_{s}=\langle u, v\rangle_{s}$, for every $u, v \in \mathbb{C}^{k}$. Here \langle,\rangle_{s} is the standard inner product on \mathbb{C}^{k}.
We aim to prove the following technical result:
Theorem: (Schur Orthogonality Relations)
Suppose that $\varphi: G \rightarrow U_{k}(\mathbb{C}), \rho: G \rightarrow U_{l}(\mathbb{C})$ are inequivalent irreducible unitary matrix representations of G. Then,

1. $\left\langle\varphi_{i j}, \rho_{s l}\right\rangle=0$, for all i, j, r, s.
2. $\left\langle\varphi_{i j}, \varphi_{r s}\right\rangle=\left\{\begin{array}{l}\frac{1}{k}, \text { if } i=r \text { and } j=s, \\ 0, \text { else }\end{array}\right.$

Before we proceed to prove the Schur Orthogonality Relations, let's see some consequences.

Corollary (9.2): Let φ be an irreducible unitary representation of degree k. Then, the set

$$
\left\{\sqrt{k} \varphi_{i j} \mid 1 \leq i, j \leq k\right\} \subseteq \mathbb{C}[G]
$$

is orthonormal.
Proof: This is an immediate consequence of 2 . above: observe that

$$
\left\langle\sqrt{k} \varphi_{i j}, \sqrt{k} \varphi_{r s}\right\rangle=k\left\langle\varphi_{i j}, \varphi_{r s}\right\rangle
$$

QED
Corollary (9.3): There are only finitely many equivalence classes of irreducible representations of G. In fact, let $\# \operatorname{Irrep}(G)$ denote the no. of distinct equivalence classes of irreducible representations. Then,

$$
\# \operatorname{Irrep}(G) \leq|G|
$$

Proof: Suppose $\# \operatorname{Irrep}(G)>|G|$, possibly infinite. Suppose $\rho^{(1)}, \ldots \rho^{(|G|+1)}$ are inequivalent irreducible representations of degree $k_{1}, \ldots, k_{|G|+1}$. Since every representation is equivalent to a unitary representation, upon choosing orthonormal bases, we obtain inequivalent irreducible unitary matrix representations

$$
\rho^{(t)}: G \rightarrow U_{k_{t}}(\mathbb{C})
$$

Let

$$
R_{t}=\left\{\rho_{i j}^{(t)} \mid 1 \leq i, j \leq k_{t}\right\}, \quad t=1, \ldots,|G|+1
$$

Then, by 2. of Schur Orthogonality Relations, we have each set R_{t} is orthogonal. Moreover, by 1., the set

$$
R=R_{1} \cup R_{2} \cup \cdots \cup R_{|G|+1}
$$

is orthogonal. Furthermore, $R_{t} \cap R_{s}=\varnothing$, for each $t \neq s$: otherwise, if $f \in R_{t} \cap R_{s}$, with $t \neq s$, then $\langle f, f\rangle=0$, by 1 . But, by 2 ., $\langle f, f\rangle=\frac{1}{k}$, which is absurd. Hence,

$$
|R|=\sum_{t=1}^{|G|+1}\left|R_{t}\right|=\sum_{t=1}^{|G|+1} k_{t}^{2} \geq \sum_{t=1}^{|G|+1} 1=|G|+1
$$

i.e. we have found an orthogonal, hence linearly independent, set $R \subseteq \mathbb{C}[G]$ such that $|R|>|G|=\operatorname{dim} \mathbb{C}[G]$, which is impossible. Therefore, it can't be possible to find $|G|+1$ inequivalent irreducible representations of G.

QED
Remark (9.4): In fact the proof tells us more: if $\rho_{1}, \ldots, \rho_{\# \operatorname{Irrep}(G)}$ are inequivalent reps, with ρ_{i} having degree k_{i}, then

$$
\# \operatorname{Irrep}(G) \leq k_{1}^{2}+\ldots+k_{\# \operatorname{Irrep}(G)}^{2} \leq|G|
$$

