## March 13: Consequences of Schur's Lemma; Group AlGEBRA

Convention: Unless otherwise specified, $G$ will always denote a finite group, $V$ a finite dimensional vector space over $\mathbb{C}$.

Corollary (8.1): Let $G$ be a finite abelian group. Then, any irreducible representation is 1-dimensional.

Proof: Let $(\rho, V)$ be irreducible. Then, for any $g \in G, \rho_{g}$ is a $G$-morphism: indeed, for any $h \in G$,

$$
\rho_{g} \rho_{h}=\rho_{g h}=\rho_{h g}=\rho_{h} \rho_{g}
$$

Hence, for any $g \in G$, there exists a scalar $\lambda_{g} \in \mathbb{C}$ such that $\rho_{g}=\lambda \cdot \mathrm{id}_{V}$, by Schur's Lemma 7.2. In particular, let $v \in V$ be nonzero. Then, for all $g \in G, \rho_{g}(v)=\lambda_{g} v$ so that $\operatorname{span}(v) \subseteq V$ is a subrepresentation. Since $V$ is irreducible, we get $\operatorname{span}(v)=V$.

QED
Corollary (8.2): Let $G$ be a finite abelian group, $(\rho, V)$ a representation of $V$. Then, there exists a basis $B \subseteq V$ such that

$$
\left[\rho_{g}\right]_{B}=\left[\begin{array}{cccc}
\lambda_{1}(g) & 0 & \cdots & 0 \\
0 & \lambda_{2}(g) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{k}(g)
\end{array}\right], \quad \text { for every } g \in G .
$$

In particular, if $G \subseteq \mathrm{GL}_{k}(\mathbb{C})$ is a finite abelian group then there exists $P \in \mathrm{GL}_{k}(\mathbb{C})$ such that $P^{-1} g P=D_{g}$ is diagonal, for every $g \in G$ i.e. $G$ is simultaneously diagonalisable.

Proof: By Maschke's Theorem (Corollary 6.3), we can find subrepresentations $U_{1}, \ldots, U_{r}$ such that $V=U_{1} \oplus \cdots \oplus U_{r}$, with $U_{i}$ irreducible. By Corollary 8.1, each $U_{i}$ is 1-dimensional so that $U_{i}=\operatorname{span}\left(v_{i}\right)$ and $r=\operatorname{dim} V=k$. Let $B=\left(v_{1}, \ldots, v_{k}\right)$. Then, $B$ is a basis of $V$ and each $v_{i}$ is a common eigenvector fo4 $\rho_{g}$, for every $g \in G$. Hence, for every $g \in G$, there are scalars $\lambda_{1}(g), \ldots, \lambda_{k}(g)$ such that $\rho_{g}\left(v_{i}\right)=\lambda_{i}(g)$. In particular,

$$
\left[\rho_{g}\right]_{B}=\left[\begin{array}{cccc}
\lambda_{1}(g) & 0 & \cdots & 0 \\
0 & \lambda_{2}(g) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{k}(g)
\end{array}\right], \quad \text { for every } g \in G \text {. } \quad \text {. }
$$

Moreover, if $G \subseteq \mathrm{GL}_{k}(\mathbb{C})$ then consider $\rho: G \rightarrow \mathrm{GL}_{k}(\mathbb{C}), g \mapsto g$ to be the inclusion homomorphism. Then, by what we have just shown, there is a basis $B \subseteq \mathbb{C}^{k}$ such that, letting $P=P_{S \leftarrow B}$ (with $S \subseteq \mathbb{C}^{k}$ the standard basis), we have $P^{-1} g P=D_{g}$ is diagonal, for every $g \in G$.

QED
Corollary (8.3): (Application of Representation Theory to Linear Algebra)

Let $T \in \operatorname{End}(V)$ be a linear map satisfying $T^{n}=\operatorname{id}_{V}$, for some $n>0$. Then, $T$ is diagonalisable.

Proof: Define a map

$$
\rho: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{GL}(V), \bar{j} \mapsto T^{j}
$$

This map is well-defined and a homomorphism because $T^{n}=\mathrm{id}_{V}$. Hence, by Corollary 8.2, there is a basis $B \subseteq V$ such that $[T]_{B}=\left[\rho_{\overline{1}}\right]_{B}$ is diagonal. This is precisely what it means for $T$ to be diagonalisable.

QED
Remark (8.4): Corollary 8.4 can be proved using the theory of the minimal polynomial of a linear map. Our approach above does not rely on the minimal polynomial, however.

Section IV: The Group Algebra
Definition (8.5): Define the group algebra of $G$ to be

$$
\mathbb{C}[G]=\{f: G \rightarrow \mathbb{C}\}
$$

the set of all functions from $G$ to $\mathbb{C}$. For $x \in G$, define $e_{x} \in \mathbb{C}[G]$ to be the function

$$
e_{x}(y)= \begin{cases}1, & \text { if } x=y \\ 0, & \text { else }\end{cases}
$$

## Proposition (8.7):

- $\mathbb{C}[G]$ is a vector space over $\mathbb{C}$.
- $\mathcal{S}=\left\{e_{x} \mid x \in G\right\}$ is a basis of $\mathbb{C}[G]$.
- The function

$$
\mathbb{C}[G] \times \mathbb{C}[G] \rightarrow \mathbb{C},(f, g) \mapsto \frac{1}{|G|} \sum_{x \in G} f(x) \overline{g(x)}
$$

defines an inner product $\langle$,$\rangle on \mathbb{C}[G]$.

## Proof:

- Define addition and scalar multiplication pointwise: for $f, g \in \mathbb{C}[G], c \in \mathbb{C}$

$$
(f+g)(x)=f(x)+g(x), \quad(c f)(x)=c f(x), \quad \text { for every } x \in G
$$

Also, $0_{\mathbb{C}[G]}$ is the zero function, $0_{\mathbb{C}[G]}(x)=0, x \in G$. With these operations, the group algebra is a vector space over $\mathbb{C}$.

- $\mathcal{S}$ spans $\mathbb{C}[G]$ : Let $f \in \mathbb{C}[G]$. Then, we claim that

$$
f=\sum_{x \in G} f(x) e_{x} \in \mathbb{C}[G]
$$

Indeed: let $y \in G$. Then,

$$
\left(\sum_{x \in G} f(x) e_{x}\right)(y)=\sum_{x \in G} f(x) e_{x}(y)=f(y), \quad \text { by definition of } e_{x} .
$$

Hence $\mathcal{S}$ spans.

