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MARCH 13: CONSEQUENCES OF SCHUR’S LEMMA; GROUP AL-
GEBRA

Convention: Unless otherwise specified, G will always denote a finite group, V a
finite dimensional vector space over C.

Corollary (8.1): Let G be a finite abelian group. Then, any irreducible represen-
tation is 1-dimensional.

Proof: Let (p,V) be irreducible. Then, for any g € G, p, is a G-morphism:
indeed, for any h € G,

PgPh = Pgh = Phg = PhPyg
Hence, for any g € G, there exists a scalar A\, € C such that p, = A -idy, by Schur’s
Lemma 7.2. In particular, let v € V' be nonzero. Then, for all g € G, p,(v) = Ajv so

that span(v) C V is a subrepresentation. Since V' is irreducible, we get span(v) = V.
QED

Corollary (8.2): Let G be a finite abelian group, (p,V') a representation of V.
Then, there exists a basis B C V such that

Mlg) 00
0 A e 0
pglB = : Qz(g) y R for every g € G.
0 0 - Xlg)

In particular, if G C GLg(C) is a finite abelian group then there exists P € GL(C)
such that P~'gP = D, is diagonal, for every g € G ie. G is simultaneously
diagonalisable.

Proof: By Maschke’s Theorem (Corollary 6.3), we can find subrepresentations
Uy,..., U, such that V =U; & --- & U,, with U; irreducible. By Corollary 8.1, each
U; is 1-dimensional so that U; = span(v;) and r = dimV = k. Let B = (vy,...,vg).
Then, B is a basis of V' and each v; is a common eigenvector fo4 p,, for every g € G.
Hence, for every g € G, there are scalars A\i(g), ..., A\x(g) such that py(v;) = Xi(g).
In particular,

M(g) 0 0
0 Xofg) -+ O
[pglB = : 2:(9) . : , for every g € G.
0 0 Al(g)

Moreover, if G C GL,(C) then consider p : G — GLi(C) , g — ¢ to be the inclusion
homomorphism. Then, by what we have just shown, there is a basis B C CF such
that, letting P = Ps. 5 (with S C C* the standard basis), we have P~1gP = D, is
diagonal, for every g € G.

QED

Corollary (8.3): (Application of Representation Theory to Linear Algebra)

1



Let T € End(V) be a linear map satisfying T" = idy, for some n > 0. Then, T' is
diagonalisable.

Proof: Define a map
p:Z/nZ — GL(V), j~ TV

This map is well-defined and a homomorphism because T™ = idy,. Hence, by Corol-
lary 8.2, there is a basis B C V such that [T|p = [pg]p is diagonal. This is precisely
what it means for T to be diagonalisable.

QED

Remark (8.4): Corollary 8.4 can be proved using the theory of the minimal polyno-
mial of a linear map. Our approach above does not rely on the minimal polynomial,
however.

SECTION IV: THE GROUP ALGEBRA
Definition (8.5): Define the group algebra of G to be
ClGl={f:G—C}
the set of all functions from G to C. For x € G, define e, € C[G] to be the function

1, ifx =y,
ex(y) :{

0, else.

Proposition (8.7):
e C|[G] is a vector space over C.
o S={e, |z € G} is a basis of C[G].

e The function
1 —
Clal xClG] = C, (f,9) = €] > fla)g(x)
zeG
defines an inner product (,) on C[G].
Proof:

e Define addition and scalar multiplication pointwise: for f, g € C[G], c € C

(f+9)@) = f(x) +g(x), (cf)(x)=cf(x), foreveryxeG.
Also, Ocig) is the zero function, O¢ig)(z) = 0, x € G. With these operations,

the group algebra is a vector space over C.

e S spans C[G]: Let f € C[G]. Then, we claim that
f=Y f(@e, €C[d]

zeG

Indeed: let y € G. Then,

(Z f (x)ez> (y) =Y f(x)es(y) = f(y), by definition of e,.

zeG zeG

Hence S spans.



