

Representation Theory Fall 2019

Contact: gwmelvin@colby.edu

March 11: G-morphisms; Schur's Lemma

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C} .

Proposition (7.1): Let (ρ, V) , (φ, W) be representations of G and $T: V \to W$ be a G-morphism. Then,

- 1. $\ker T$ is a subrepresentation of V,
- 2. im T is a subrepresentation of W.

Proof:

1. Let $v \in \ker T$, $g \in G$. Then,

$$T(\rho_g(v)) = \varphi_g(T(v)) = \varphi_g(0_W) = 0_W \implies \rho_g(v) \in \ker T.$$

2. Let $w \in \text{im } T, g \in G$. Suppose w = T(v). Then,

$$\varphi_q(w) = \varphi_q(T(v)) = T(\rho_q(v)) \in \text{im } T$$

QED

We have the following important consequence of Proposition 7.1:

Lemma (7.2): (Schur's Lemma)

Let $(\rho, V), (\varphi, W)$ be irreducible representations of $G, T \in \text{Hom}_G(\rho, \varphi)$. Then, either T = 0 or T is invertible.

Moreover,

- If φ, ρ are inequivalent then $\operatorname{Hom}_G(\rho, \varphi) = 0$.
- If $\varphi = \rho$ then $\operatorname{End}_G(\rho) = \operatorname{Hom}_G(\rho, \rho) = \{\lambda \cdot \operatorname{id}_V \mid \lambda \in \mathbb{C}\}.$

Proof: Suppose that $T \neq 0$. Then,

- $\ker T \neq V$ is a subrepresentation of V, by Proposition 7.1. Hence, $\ker T = \{0_V\}$, since ρ irreducible, and T is injective.
- im $T \neq \{0_W\}$ is a subrepresentation of W, by Proposition 7.1. Hence, im T = W, since φ is irreducible, and T is surjective.

Therefore, if $T \neq 0$ then T is invertible.

Suppose now that $\rho = \varphi$. Let $T: V \to V$ be a G-morphism. Let $\lambda \in \mathbb{C}$ be an eigenvalue, $v \in \ker(T - \lambda \mathrm{id}_V)$ an associated eigenvector. Hence,

$$E_{\lambda} = \ker(T - \lambda \mathrm{id}_V) \neq \{0_V\}$$

Moreover, for any $g \in G$,

$$T(\rho_g(v)) = \rho(g)(T(v)) = \rho_g(\lambda v) = \lambda \rho_g(v) \implies \rho_g(v) \in E_{\lambda}$$

Hence, E_{λ} is a nonzero subrepresentation and $E_{\lambda} = V$, since ρ is irreducible. In particular, for any $v \in V$, $T(v) = \lambda v$.

QED

Remark (7.3):

- $\operatorname{Hom}_G(\rho, \varphi) \subseteq \operatorname{Hom}(V, W)$ is a subspace.
- Schur's Lemma implies that $\operatorname{End}_G(\rho) = \operatorname{Hom}_G(\rho, \rho) \subseteq \operatorname{End}(V)$ is a subring. In fact, $\operatorname{End}_G(\rho)$ is, in a natural way, a field.