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MARCH 11: G-MORPHISMS; SCHUR’S LEMMA

Convention: Unless otherwise specified, G will always denote a finite group, V' a
finite dimensional vector space over C.

Proposition (7.1): Let (p,V), (¢, W) be representations of G and T : V. — W be
a G-morphism. Then,

1. ker T is a subrepresentation of V,

2. im T is a subrepresentation of W.

Proof:

1. Let v e kerT, g € GG. Then,
T(pg(v)) = ¢g(T(v)) = 0g(O0w) = 0w = py(v) €kerT.
2. Let weim T, g € G. Suppose w = T'(v). Then,
pg(w) = @4(T(v)) = T(pg(v)) € Im T

QED

We have the following important consequence of Proposition 7.1:

Lemma (7.2): (Schur’s Lemma)

Let (p, V), (¢, W) be irreducible representations of G, T' € Homg(p, ). Then, either
T =0 or T is invertible.
Moreover,

e If v, p are inequivalent then Homeg(p, ¢) = 0.
e If ¢ = p then Endg(p) = Homg(p, p) = {\-idy | A € C}.
Proof: Suppose that T' # 0. Then,

- kerT" # V is a subrepresentation of V', by Proposition 7.1. Hence, kerT' =
{0y}, since p irreducible, and T is injective.

- im T # {Ow} is a subrepresentation of W, by Proposition 7.1. Hence, im 7" =
W, since ¢ is irreducible, and 7' is surjective.

Therefore, if T'# 0 then T is invertible.
Suppose now that p = ¢. Let T : V — V be a G-morphism. Let A € C be an
eigenvalue, v € ker(T' — Aidy ) an associated eigenvector. Hence,

E)\ = ker(T — )\ldv) # {Ov}



Moreover, for any g € G,

T(pg(v)) = p(g)(T(v)) = py(Av) = Apg(v) = py(v) € E)

Hence, E) is a nonzero subrepresentation and £\ = V, since p is irreducible. In
particular, for any v € V', T'(v) = Av.
QED

Remark (7.3):
e Homg(p, ¢) € Hom(V, W) is a subspace.

e Schur’s Lemma implies that Endg(p) = Home(p, p) € End(V) is a subring. In
fact, Endg(p) is, in a natural way, a field.



