February 8: Linear Algebra Review

Let V be a vector space with field of scalars $\mathbb{C}, S=\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ a subset of vectors. We recall the following fundamental notions:

- $\operatorname{span}(S)=\left\{a_{1} v_{1}+\ldots+a_{n} v_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{C}\right\}$, the set of all linear combinations of elements in S, is a subspace; $\operatorname{dim} S \leq n$.
- If $\operatorname{span}(S)=V$ then we say S spans V : this means that, for every $v \in V$, there's $a_{1}, \ldots, a_{n} \in \mathbb{C}$ so that

$$
v=a_{1} v_{1}+\ldots+a_{n} v_{n}
$$

For example, if $V=\mathbb{C}^{k}$ and $M=\left[v_{1} \cdots v_{n}\right]$ is a $k \times n$ matrix having $i^{\text {th }}$ column v_{i} then S spans $V \Leftrightarrow M$ has RREF containing a leading 1 in every row.

- Say S is linearly dependent if there's scalars $a_{1}, \ldots, a_{n} \in \mathbb{C}$, at least one of which is nonzero, such that

$$
a_{1} v_{!}+\ldots+a_{n} v_{n}=0_{V} \in V
$$

For example, if $V=\mathbb{C}^{k}, M$ as above, then S linearly dependent \Leftrightarrow there exists $x \in \mathbb{C}^{n}, x \neq 0$, so that $M x=0 \in \mathbb{C}^{k}$.

- S is linearly independent if it's not linearly dependent. This means that whenever we have a linear relation

$$
a_{1} v_{1}+\ldots+a_{n} v_{n}=0_{V}
$$

it must be the case that $a_{1}=\ldots=a_{n}=0 \in \mathbb{C}$. For example, if $V=\mathbb{C}^{n}, M$ as above, then S linearly independent $\Leftrightarrow M$ has RREF containing a leading 1 in every column.

- Say S is a basis (of V) if $\operatorname{span}(S)=V$ and S is linearly independent. This means that, for every $v \in V$, there exists unique scalars $a_{1}, \ldots, a_{n} \in \mathbb{C}$ such that

$$
v=a_{1} v_{1}+\ldots+a_{n} v_{n}
$$

- Define the dimension of V, denoted $\operatorname{dim} V$, to be the cardinality of any basis (it's a basic fact that this definition is well-defined).

Coordinates

Let $B=\left(v_{1}, \ldots, v_{k}\right) \subset V$ be a basis of V. For any $v \in V$, define the B-coordinates of v to be

$$
[v]_{B}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k}
\end{array}\right] \in \mathbb{C}^{k}
$$

where a_{1}, \ldots, a_{k} are the unique scalars such that $v=\sum_{i=1}^{k} a_{i} v_{i}$.
Example: Let

$$
B=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

Then, B is a basis of \mathbb{C}^{3}. Let $v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]:$ what's $[v]_{B}$? We must find a_{1}, a_{2}, a_{3} satisfying

$$
a_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This is the same as solving the matrix equation

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Using row-reduction, we find

$$
[v]_{B}=\left[\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right]
$$

that is,

$$
(1 / 2)\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+0\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+(-1 / 2)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $T: V \rightarrow W$ be a linear map, $\operatorname{dim} V=k, \operatorname{dim} W=l, B=\left(v_{1}, \ldots, v_{k}\right) \subset V$ and $C \subset W$ bases. Define the matrix of T with respect to B, C to be the $l \times k$ matrix

$$
[T]_{B}^{C}=\left[\left[T\left(v_{1}\right)\right]_{C} \cdots\left[T\left(v_{k}\right)\right]_{B}\right]
$$

When $V=W$ and $B=C$, write $[T]_{B}=[T]_{B}^{B} .[T]_{B}^{C}$ is the unique $l \times k$ such that, for any $v \in V$,

$$
[T(v)]_{C}=[T]_{B}^{C}[v]_{B},
$$

(AMAZING PROPERTY)

