

FEBRUARY 8: LINEAR ALGEBRA REVIEW

Let V be a vector space with field of scalars \mathbb{C} , $S = \{v_1, \ldots, v_k\} \subset V$ a subset of vectors. We recall the following fundamental notions:

- $\operatorname{span}(S) = \{a_1v_1 + \ldots + a_nv_n \mid a_1, \ldots, a_n \in \mathbb{C}\}, \text{ the set of all linear combinations of elements in } S, \text{ is a subspace; } \dim S \leq n.$
- If $\operatorname{span}(S) = V$ then we say S spans V: this means that, for every $v \in V$, there's $a_1, \ldots, a_n \in \mathbb{C}$ so that

$$v = a_1 v_1 + \ldots + a_n v_n$$

For example, if $V = \mathbb{C}^k$ and $M = [v_1 \cdots v_n]$ is a $k \times n$ matrix having i^{th} column v_i then S spans $V \Leftrightarrow M$ has RREF containing a leading 1 in every row.

• Say S is **linearly dependent** if there's scalars $a_1, \ldots, a_n \in \mathbb{C}$, at least one of which is nonzero, such that

$$a_1v_1 + \ldots + a_nv_n = 0_V \in V$$

For example, if $V = \mathbb{C}^k$, M as above, then S linearly dependent \Leftrightarrow there exists $x \in \mathbb{C}^n$, $x \neq 0$, so that $Mx = 0 \in \mathbb{C}^k$.

• S is **linearly independent** if it's **not** linearly dependent. This means that whenever we have a linear relation

$$a_1v_1 + \ldots + a_nv_n = 0_V$$

it must be the case that $a_1 = \ldots = a_n = 0 \in \mathbb{C}$. For example, if $V = \mathbb{C}^n$, M as above, then S linearly independent $\Leftrightarrow M$ has RREF containing a leading 1 in every column.

• Say S is a **basis** (of V) if $\operatorname{span}(S) = V$ and S is linearly independent. This means that, for every $v \in V$, there exists unique scalars $a_1, \ldots, a_n \in \mathbb{C}$ such that

$$v = a_1 v_1 + \ldots + a_n v_n$$

• Define the **dimension of** V, denoted dim V, to be the cardinality of any basis (it's a basic fact that this definition is well-defined).

Coordinates

Let $B = (v_1, \ldots, v_k) \subset V$ be a basis of V. For any $v \in V$, define the B-coordinates of v to be

$$[v]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} \in \mathbb{C}^k$$

where a_1, \ldots, a_k are the unique scalars such that $v = \sum_{i=1}^k a_i v_i$.

Example: Let

$$B = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

Then, *B* is a basis of \mathbb{C}^3 . Let $v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$: what's $[v]_B$? We must find a_1, a_2, a_3 satisfying

$$a_1 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + a_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

This is the same as solving the matrix equation

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Using row-reduction, we find

$$[v]_B = \begin{bmatrix} 1/2\\0\\-1/2 \end{bmatrix};$$

that is,

$$(1/2)\begin{bmatrix}1\\0\\-1\end{bmatrix}+0\begin{bmatrix}1\\-1\\0\end{bmatrix}+(-1/2)\begin{bmatrix}1\\0\\1\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}$$

Let $T: V \to W$ be a linear map, dim V = k, dim W = l, $B = (v_1, \ldots, v_k) \subset V$ and $C \subset W$ bases. Define the **matrix of** T with respect to B, C to be the $l \times k$ matrix

$$[T]_B^C = [[T(v_1)]_C \cdots [T(v_k)]_B]$$

When V = W and B = C, write $[T]_B = [T]_B^B$. $[T]_B^C$ is the unique $l \times k$ such that, for any $v \in V$, $[T(v)] = [T]_C^C[v]$ (AMAZINIC PROPERTY)

$$[T(v)]_C = [T]_B^C[v]_B, \qquad (AMAZING PROPERTY)$$