February 27: Irreducibility, direct sum, decomposABILITY

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Remark (3.1):

- Let (ρ, V) be a representation of $G, U \subseteq V$ a subrepresentation. Choose a basis $B^{\prime} \subseteq U$ and extend to a basis B of V. Then, for any $g \in G$,

$$
\left[\rho_{g}\right]_{B}=\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right]
$$

is block upper-triangular, where the top left $* \operatorname{denotes}$ a $\operatorname{dim} U \times \operatorname{dim} U$ matrix. Conversely, if $B=\left(v_{1}, \ldots, v_{k}\right)$ is a basis of V such that

$$
\left[\rho_{g}\right]_{B}=\left[\begin{array}{cc}
\stackrel{i \times i}{*} & * \\
0 & *
\end{array}\right], \quad \text { for all } g \in G,
$$

then $U=\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)$ is a subrepresentation of V.

- Suppose $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ are equivalent representations. Then:
$-\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$
- If $T: V_{1} \rightarrow V_{2}$ is a G-isomorphism - $T \circ \rho_{1}(g)=\rho_{2}(g) \circ T$, for all $g \in G$ and $B_{1} \subseteq V_{1}, B_{2} \subseteq V_{2}$ are bases, then

$$
[T]_{B_{1}}^{B_{2}}\left[\rho_{1}(g)\right]_{B_{1}}=\left[\rho_{2}(g)\right]_{B_{2}}[T]_{B_{1}}^{B_{2}}
$$

Conversely, if $\rho_{1}: G \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ and $\rho_{2}: G \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ and $P \in \mathrm{GL}_{k}(\mathbb{C})$ satisfies

$$
P^{-1} \rho_{1}(g) P=\rho_{2}(g), \quad \text { for all } g \in G,
$$

then ρ_{1} and ρ_{2} are equivalent: the linear map

$$
T: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}, v \mapsto P v
$$

is a G-isomorphism.
In particular, $\rho_{1} \simeq \rho_{2}$ if and only if there exists bases $B_{1} \subseteq V_{1}, B_{2} \subseteq V_{2}$, such that

$$
\left[\rho_{1}(g)\right]_{B_{1}}=\left[\rho_{2}(g)\right]_{B_{2}}, \quad \text { for all } g \in G
$$

Definition (3.2): Let (ρ, V) be a nonzero representation of G. We say that (ρ, V) is irreducible (or simple) if the only subrepresentations of V are $\left\{0_{V}\right\}$ or V.

Example (3.3):

1. Any degree 1 representation is irreducible.
2. The standard representation $\varphi: S_{n} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ is not irreducible: $U=$ $\operatorname{span}\left(e_{1}+\ldots+e_{n}\right) \subseteq \mathbb{C}^{n}$ is a subrepresentation.
3. The representation of D_{8} defined by

$$
\begin{aligned}
\rho: \begin{array}{c}
D_{8}
\end{array} & \rightarrow G L_{2}(\mathbb{C}) \\
r & \mapsto\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
s & \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

is irreducible: if not, then there would exist a degree 1 subrepresentation $U=$ $\operatorname{span}(v) \subseteq \mathbb{C}^{2}$. In particular, there would exist scalars $\lambda, \mu \in \mathbb{C}$ such that

$$
\begin{equation*}
r v=\lambda v, \quad s v=\mu v \tag{*}
\end{equation*}
$$

Now, s admits two distinct eigenvalues $1,-1$ with corresponding eigenspaces

$$
E_{1}=\operatorname{span}\left(e_{1}\right), \quad E_{-1}=\operatorname{span}\left(e_{2}\right)
$$

This means that $v=a e_{1}$ or $v=b e_{2}$. However, neither e_{1} nor e_{2} are eigenvectors for r so that $(*)$ can't hold. Hence, no such degree 1 subrepresentation U can exist so that ρ is irreducible.

Remark (3.4): Checking whether a given representation is irreducible is difficult, in general.

Definition (3.5): Let $\left(\rho_{1}, V_{1}\right),\left(\rho_{2}, V_{2}\right)$ be representations of G. The direct sum representation is the representation

$$
\rho_{1} \oplus \rho_{2}: G \rightarrow \mathrm{GL}\left(V_{1} \times V_{2}\right), g \mapsto\left(\rho_{1}(g), \rho_{2}(g)\right)
$$

where, for $g \in G,(u, v) \in V_{1} \times V_{2}$,

$$
\left(\rho_{1}(g), \rho_{2}(g)\right)(u, v)=\left(\rho_{1}(g)(u), \rho_{2}(g)(v)\right)
$$

This notion can be extended to define the direct sum $\rho_{1} \oplus \cdots \oplus \rho_{r}$ of several representations $\left(\rho_{1}, V_{1}\right), \ldots,\left(\rho_{r}, V_{r}\right)$.
We say that (ρ, V) is completely reducible if ρ is equivalent to a direct sum of irreducible representations.

Remark (3.6): The product $V_{1} \times V_{2}$ is a vector space as follows:

- $\left(v_{1}, v_{2}\right)+\left(u_{1}, u_{2}\right)=\left(v_{1}+u_{1}, v_{2}+u_{2}\right)$,
- $c \cdot\left(v_{1}, v_{2}\right)=\left(c v_{1}, c v_{2}\right)$,
- $0_{V_{1} \times V_{2}}=\left(0_{V_{1}}, 0_{V_{2}}\right)$.

