

FEBRUARY 27: Irreducibility, direct sum, decomposability

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C} .

Remark (3.1):

• Let (ρ, V) be a representation of $G, U \subseteq V$ a subrepresentation. Choose a basis $B' \subseteq U$ and extend to a basis B of V. Then, for any $g \in G$,

$$[\rho_g]_B = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$$

is block upper-triangular, where the top left * denotes a dim $U \times \dim U$ matrix. Conversely, if $B = (v_1, \ldots, v_k)$ is a basis of V such that

$$[\rho_g]_B = \begin{bmatrix} i \times i & * \\ * & * \\ 0 & * \end{bmatrix}, \quad \text{for all } g \in G,$$

then $U = \operatorname{span}(v_1, \ldots, v_i)$ is a subrepresentation of V.

- Suppose (ρ_1, V_1) and (ρ_2, V_2) are equivalent representations. Then:
 - $-\dim V_1 = \dim V_2$
 - If $T: V_1 \to V_2$ is a *G*-isomorphism $T \circ \rho_1(g) = \rho_2(g) \circ T$, for all $g \in G$ and $B_1 \subseteq V_1, B_2 \subseteq V_2$ are bases, then

$$[T]_{B_1}^{B_2}[\rho_1(g)]_{B_1} = [\rho_2(g)]_{B_2}[T]_{B_1}^{B_2}$$

Conversely, if $\rho_1 : G \to \operatorname{GL}_k(\mathbb{C})$ and $\rho_2 : G \to \operatorname{GL}_k(\mathbb{C})$ and $P \in \operatorname{GL}_k(\mathbb{C})$ satisfies

 $P^{-1}\rho_1(g)P = \rho_2(g), \quad \text{for all } g \in G,$

then ρ_1 and ρ_2 are equivalent: the linear map

$$T: \mathbb{C}^k \to \mathbb{C}^k , \ v \mapsto Pv$$

is a G-isomorphism.

In particular, $\rho_1 \simeq \rho_2$ if and only if there exists bases $B_1 \subseteq V_1$, $B_2 \subseteq V_2$, such that

$$[\rho_1(g)]_{B_1} = [\rho_2(g)]_{B_2}, \quad \text{for all } g \in G.$$

Definition (3.2): Let (ρ, V) be a nonzero representation of G. We say that (ρ, V) is **irreducible** (or **simple**) if the only subrepresentations of V are $\{0_V\}$ or V.

Example (3.3):

- 1. Any degree 1 representation is irreducible.
- 2. The standard representation $\varphi : S_n \to \operatorname{GL}_n(\mathbb{C})$ is not irreducible: $U = \operatorname{span}(e_1 + \ldots + e_n) \subseteq \mathbb{C}^n$ is a subrepresentation.
- 3. The representation of D_8 defined by

$$\rho: D_8 \to GL_2(\mathbb{C})$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$s \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

is irreducible: if not, then there would exist a degree 1 subrepresentation $U = \operatorname{span}(v) \subseteq \mathbb{C}^2$. In particular, there would exist scalars $\lambda, \mu \in \mathbb{C}$ such that

$$rv = \lambda v, \qquad sv = \mu v \tag{(*)}$$

Now, s admits two distinct eigenvalues 1, -1 with corresponding eigenspaces

$$E_1 = \operatorname{span}(e_1), \qquad E_{-1} = \operatorname{span}(e_2)$$

This means that $v = ae_1$ or $v = be_2$. However, neither e_1 nor e_2 are eigenvectors for r so that (*) can't hold. Hence, no such degree 1 subrepresentation U can exist so that ρ is irreducible.

Remark (3.4): Checking whether a given representation is irreducible is difficult, in general.

Definition (3.5): Let (ρ_1, V_1) , (ρ_2, V_2) be representations of *G*. The **direct sum** representation is the representation

$$\rho_1 \oplus \rho_2 : G \to \operatorname{GL}(V_1 \times V_2), \ g \mapsto (\rho_1(g), \rho_2(g))$$

where, for $g \in G$, $(u, v) \in V_1 \times V_2$,

$$(\rho_1(g), \rho_2(g))(u, v) = (\rho_1(g)(u), \rho_2(g)(v))$$

This notion can be extended to define the direct sum $\rho_1 \oplus \cdots \oplus \rho_r$ of several representations $(\rho_1, V_1), \ldots, (\rho_r, V_r)$.

We say that (ρ, V) is **completely reducible** if ρ is equivalent to a direct sum of irreducible representations.

Remark (3.6): The product $V_1 \times V_2$ is a vector space as follows:

- $(v_1, v_2) + (u_1, u_2) = (v_1 + u_1, v_2 + u_2),$
- $c \cdot (v_1, v_2) = (cv_1, cv_2),$
- $0_{V_1 \times V_2} = (0_{V_1}, 0_{V_2}).$