February 25: Subrepresentations, equivalence

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Example (2.1): Let $G=S_{n}$. The standard representation is

$$
\varphi: S_{n} \rightarrow \mathrm{GL}_{n}(\mathbb{C}), \sigma \mapsto\left[e_{\sigma(1)} e_{\sigma(2)} \cdots e_{\sigma(n)}\right]
$$

Here $e_{i} \in \mathbb{C}^{n}$ is the $i^{t h}$ standard basis vector of \mathbb{C}^{n}. The matrix φ_{σ} is the permutation matrix corresponding to σ.

Observe: for $\sigma, \tau \in S_{n}$, the $i^{\text {th }}$ column of φ_{σ} is $e_{\sigma(i)}$. Hence, the $i^{\text {th }}$ column of $\varphi_{\tau} \varphi_{\sigma}$ is the $\sigma(i)^{t h}$ column of φ_{τ} i.e.

$$
\varphi_{\tau} \varphi_{\sigma}=\left[\begin{array}{llll}
e_{\tau(\sigma(1))} & e_{\tau(\sigma(2))} & \cdots & e_{\tau(\sigma(n))}
\end{array}\right]=\varphi_{\tau \sigma}
$$

Hence, φ is a homomorphism.
Definition (2.2): Let (ρ, V) be a representation of $G, U \subseteq V$ a subspace. We say that U is a subrepresentation of ρ (or, a subrepresentation of V) if $\rho_{g}(u) \in U$, for every $u \in U, g \in G$. We will also say that U is G-invariant.
Remark (2.3): If $U \subseteq V$ is a subrepresentation then ρ restricts to give a representation of G in U :

$$
\rho_{\left.\right|_{U}}: G \rightarrow, g \mapsto \rho(g)_{\left.\right|_{U}}
$$

Example (2.4): Let $U=\operatorname{span}\left(e_{1}+\ldots+e_{n}\right) \subseteq \mathbb{C}^{n}$. Then, for any $\sigma \in S_{n}$,

$$
\varphi_{\sigma}\left(e_{1}+\ldots+e_{n}\right)=e_{\sigma(1)}+\ldots+e_{\sigma(n)} \in U
$$

Hence, U is a subrepresentation of the standard representation of S_{n}.
There is another subrepresentation

$$
W=\operatorname{nul}\left(\left[\begin{array}{lll}
1 & 1 & \cdots
\end{array}\right]=\left\{\left.\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \right\rvert\, x_{1}+\ldots+x_{n}=0\right\}\right.
$$

Indeed, for $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in W, \sigma \in S_{n}$,

$$
\varphi_{\sigma}(x)=x_{1} e_{\sigma(1)}+x_{2} e_{\sigma(2)}+\ldots+x_{n} e_{\sigma(n)}=\left[\begin{array}{c}
x_{\sigma^{-1}(1)} \\
\vdots \\
x_{\sigma^{-1}(n)}
\end{array}\right]
$$

Since the entries of $\varphi_{\sigma}(x)$ are just a permutation of the entries of x, their sum is also $0 \Longrightarrow \varphi_{\sigma}(x) \in W$.
Remark (2.5): With respect to the basis $B=\left(\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]\right) \subseteq U$, we have $\left[\varphi_{\sigma}\right]_{B}=[1]$, for every $\sigma \in S_{n}$. Observe the similarity with the trivial representation.

Definition (2.6): Let $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ be representations of G. We say that ρ_{1}, ρ_{2} are equivalent if there exists a linear isomorphism

$$
T: V_{1} \rightarrow V_{2}
$$

such that $T \circ \rho_{1}(g)=\rho_{2}(g) \circ T$, for every $g \in G$. In this case, we write $\rho_{1} \simeq \rho_{2}$ and say that T intertwines ρ_{1}, ρ_{2}, or that T is a G-isomorphism.
Example (2.7):

1. Consider the map

$$
T: U \rightarrow \mathbb{C},\left[\begin{array}{c}
a \\
\vdots \\
a
\end{array}\right] \mapsto a
$$

Then, T is a linear isomorphism. Also, for any $\sigma \in S_{n}$,

$$
T\left(\varphi_{\sigma}\left(\left[\begin{array}{c}
a \\
\vdots \\
a
\end{array}\right]\right)\right)=T\left(\left[\begin{array}{c}
a \\
\vdots \\
a
\end{array}\right]\right)=a=\operatorname{triv}_{\sigma}\left(T\left(\left[\begin{array}{c}
a \\
\vdots \\
a
\end{array}\right]\right)\right)
$$

so that $T \circ \varphi_{\sigma}=$ triv $\circ T$. Hence, the subrepresentation U is equivalent to the degree 1 trivial representation of S_{n}.
2. Let $G=D_{8}$, the symmetries of the unit square in \mathbb{R}^{2}. Let $r=$ rotation of the plane by $\pi / 2, s=$ reflection across the x-axis. We have

$$
D_{8}=\left\{e, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}
$$

Then, realising these isometries as 2×2 matrices defines a representation:

$$
\begin{aligned}
\rho_{1}: \begin{array}{c}
D_{8}
\end{array} & \rightarrow \\
r & \mapsto\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
s & \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Note that, in D_{8}, we have the relations

$$
r^{4}=s^{2}=e, \quad s r=r^{-1} s
$$

You can check that

$$
\rho_{1}(r)^{4}=\rho_{1}(s)^{2}=\mathbb{I}_{2}, \quad \text { and } \quad \rho_{1}(s) \rho_{1}(r)=\rho_{1}(r)^{-1} \rho_{1}(s)
$$

This ensures that ρ_{1} defines a homomorphism.

We define another representation

$$
\begin{array}{rlll}
\rho_{2}: \begin{array}{cc}
D_{8} & \rightarrow
\end{array} \\
r & \mapsto L_{2}(\mathbb{C}) \\
& \mapsto & {\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]} \\
s & \mapsto & {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}
\end{array}
$$

Claim: $\rho_{1} \simeq \rho_{2}$.
Proof: Define $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, v \mapsto\left[\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right] v$. Then,

$$
T\left(\rho_{1}(r)\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)\right)=\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

and

$$
\rho_{2}(r)\left(T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)\right)=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Can check that

$$
\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]
$$

so that T is a G-isomorphism..

