February 22: Representation Theory

Note: The completion of the proof of the Spectral Theorem is in February 20 lecture.
Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C}.

Definition (1.1): A (linear) representation of G is a group homomorphism

$$
\rho: G \rightarrow \mathrm{GL}(V)=\{L \in \operatorname{End}(V) \mid L \text { invertible }
$$

The degree of ρ is $\operatorname{dim} V$. This means: for every $g, g^{\prime} \in G, v, v^{\prime} \in V, \lambda \in \mathbb{C}$,

- $\rho(g)\left(v+v^{\prime}\right)=\rho(g)(v)+\rho(g)\left(v^{\prime}\right)$, and $\rho(g)(\lambda v)=\lambda \rho(g)(v)$,
- $\rho\left(g g^{\prime}\right)=\rho(g) \circ \rho\left(g^{\prime}\right), \rho\left(e_{G}\right)=\mathrm{id}_{V}$, and $\rho\left(g^{-1}\right)=\rho(g)^{-1}$.

Notation \& Terminology (1.2): We usually write $\rho_{g}=\rho(g), g \in G$, i.e. ρ_{g} is the linear map corresponding to $g \in G$.

We will often write (ρ, V) when we want to be explicit. By abuse of notation, we will also call V a representation of G i.e. we will implicitly assume the existence of the homomorphism ρ.
Remark (1.3): Identifying $\mathrm{GL}(V) \simeq \mathrm{GL}_{k}(\mathbb{C})$ (by choosing a basis B of V, say), we can identify the linear maps $\rho_{g}, g \in G$, with invertible $k \times k$ matrices.

When $V=\mathbb{C}^{k}$ we will frequently define ρ_{g} via its standard matrix (the matrix $\left[\rho_{G}\right]_{S}$) and define (by abuse of notation) a representation as a homomorphism

$$
\rho: G \rightarrow \mathrm{GL}_{k}(\mathbb{C})
$$

Example:

1. Let $G=(\mathbb{Z} / 3 \mathbb{Z},+)$. Define the degree 2 representation

$$
\rho: G \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \bar{j} \mapsto\left[\begin{array}{cc}
\cos (2 \pi j / 3) & -\sin (2 \pi j / 3) \\
\sin (2 \pi j / 3) & \cos (2 \pi j / 3)
\end{array}\right]
$$

Here $\bar{j}=j+3 \mathbb{Z}$.
This map is well-defined: if $\bar{j}=\overline{j^{\prime}}$ then $j=j^{\prime}+3 r$, for some integer r. Then

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos (2 \pi j / 3) & -\sin (2 \pi j / 3) \\
\sin (2 \pi j / 3) & \cos (2 \pi j / 3)
\end{array}\right]} \\
=\left[\begin{array}{cc}
\cos \left(2 \pi\left(j^{\prime}+3\right) / 3\right) & -\sin \left(2 \pi\left(j^{\prime}+3\right) / 3\right) \\
\sin \left(2 \pi\left(j^{\prime}+3\right) / 3\right) & \cos \left(2 \pi\left(j^{\prime}+3\right) / 3\right)
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(2 \pi j^{\prime} / 3\right) & -\sin \left(2 \pi j^{\prime} / 3\right) \\
\sin \left(2 \pi j^{\prime} / 3\right) & \cos \left(2 \pi j^{\prime} / 3\right)
\end{array}\right]
\end{gathered}
$$

Using double angle trig. formulae, you can show that $\rho(\bar{i}+\bar{j})=\rho(\bar{i}) \rho(\bar{j})$.
2. For any group G, define the degree 1 trivial representation

$$
\operatorname{triv}_{G}: G \rightarrow \mathrm{GL}(\mathbb{C}), g \mapsto \mathrm{id}_{\mathbb{C}}
$$

i.e. for any $a \in \mathbb{C}, g \in G$, $\operatorname{triv}_{G}(g)(a)=a$.
3. Let S_{n} be the symmetric group on n letters. We will realise S_{n} as the group of bijections on $\{1, \ldots, n\}$ so that elements of S_{n} are functions.

Define the standard representation of S_{n},

$$
\varphi: S_{n} \rightarrow \mathrm{GL}_{n}(\mathbb{C}), \sigma \mapsto \varphi_{\sigma}=\left[e_{\sigma(1)} e_{\sigma(2)} \cdots e_{\sigma(n)}\right]
$$

For example, when $n=3$, we have
$\varphi((123))=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], \quad \varphi((13))=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \quad \varphi((12))=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ etc.
Let's check that φ is a homomorphism: we need to show that, for any $\sigma, \tau \in S_{n}$, $\varphi_{\tau \sigma}=\varphi_{\tau} \varphi_{\sigma}$.
The $i^{\text {th }}$ column of $\varphi_{\tau} \varphi_{\sigma}$ is obtained by multiplying the $i^{t h}$ column of φ_{σ} by φ_{τ} : that is, $\varphi_{\tau} e_{\sigma(i)}$. Thinking a little about how matrix multiplication works, we see that $\varphi_{\tau} e_{\sigma(i)}$ is the $\sigma(i)^{t h}$ column of φ_{τ}, namely $e_{\tau(\sigma(i))}$. But this is precisely the $i^{\text {th }}$ column of $\varphi_{\tau \sigma}$. Hence, $\varphi_{\tau \sigma}=\varphi_{\tau} \varphi_{\sigma}$.

