

FEBRUARY 22: REPRESENTATION THEORY

Note: The completion of the proof of the Spectral Theorem is in February 20 lecture.

Convention: Unless otherwise specified, G will always denote a finite group, V a finite dimensional vector space over \mathbb{C} .

Definition (1.1): A (linear) representation of G is a group homomorphism

$$\rho: G \to \operatorname{GL}(V) = \{ L \in \operatorname{End}(V) \mid L \text{ invertible} \}$$

The **degree of** ρ is dim V. This means: for every $g, g' \in G, v, v' \in V, \lambda \in \mathbb{C}$,

- $\rho(g)(v+v') = \rho(g)(v) + \rho(g)(v')$, and $\rho(g)(\lambda v) = \lambda \rho(g)(v)$,
- $\rho(gg') = \rho(g) \circ \rho(g'), \ \rho(e_G) = \mathrm{id}_V, \ \mathrm{and} \ \rho(g^{-1}) = \rho(g)^{-1}.$

Notation & Terminology (1.2): We usually write $\rho_g = \rho(g), g \in G$, i.e. ρ_g is the linear map corresponding to $g \in G$.

We will often write (ρ, V) when we want to be explicit. By abuse of notation, we will also call V a **representation of** G i.e. we will implicitly assume the existence of the homomorphism ρ .

Remark (1.3): Identifying $GL(V) \simeq GL_k(\mathbb{C})$ (by choosing a basis *B* of *V*, say), we can identify the linear maps ρ_q , $g \in G$, with invertible $k \times k$ matrices.

When $V = \mathbb{C}^k$ we will frequently define ρ_g via its standard matrix (the matrix $[\rho_G]_S$) and define (by abuse of notation) a representation as a homomorphism

$$\rho: G \to \mathrm{GL}_k(\mathbb{C}).$$

Example:

1. Let $G = (\mathbb{Z}/3\mathbb{Z}, +)$. Define the degree 2 representation

$$\rho: G \to \operatorname{GL}_2(\mathbb{C}) , \ \overline{j} \mapsto \begin{bmatrix} \cos(2\pi j/3) & -\sin(2\pi j/3) \\ \sin(2\pi j/3) & \cos(2\pi j/3) \end{bmatrix}$$

Here $\overline{j} = j + 3\mathbb{Z}$.

This map is well-defined: if $\overline{j} = \overline{j'}$ then j = j' + 3r, for some integer r. Then

$$\begin{bmatrix} \cos(2\pi j/3) & -\sin(2\pi j/3)\\ \sin(2\pi j/3) & \cos(2\pi j/3) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2\pi(j'+3)/3) & -\sin(2\pi(j'+3)/3) \\ \sin(2\pi(j'+3)/3) & \cos(2\pi(j'+3)/3) \end{bmatrix} = \begin{bmatrix} \cos(2\pi j'/3) & -\sin(2\pi j'/3) \\ \sin(2\pi j'/3) & \cos(2\pi j'/3) \end{bmatrix}$$

Using double angle trig. formulae, you can show that $\rho(\bar{i} + \bar{j}) = \rho(\bar{i})\rho(\bar{j})$.

2. For any group G, define the degree 1 trivial representation

$$\operatorname{triv}_G: G \to \operatorname{GL}(\mathbb{C}) , \ g \mapsto \operatorname{id}_{\mathbb{C}}$$

i.e. for any $a \in \mathbb{C}$, $g \in G$, $\operatorname{triv}_G(g)(a) = a$.

3. Let S_n be the symmetric group on n letters. We will realise S_n as the group of bijections on $\{1, \ldots, n\}$ so that elements of S_n are functions.

Define the standard representation of S_n ,

$$\varphi: S_n \to \operatorname{GL}_n(\mathbb{C}), \ \sigma \mapsto \varphi_\sigma = [e_{\sigma(1)} \ e_{\sigma(2)} \ \cdots \ e_{\sigma(n)}]$$

For example, when n = 3, we have

$$\varphi((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \varphi((13)) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \varphi((12)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{etc.}$$

Let's check that φ is a homomorphism: we need to show that, for any $\sigma, \tau \in S_n$, $\varphi_{\tau\sigma} = \varphi_{\tau}\varphi_{\sigma}$.

The i^{th} column of $\varphi_{\tau}\varphi_{\sigma}$ is obtained by multiplying the i^{th} column of φ_{σ} by φ_{τ} : that is, $\varphi_{\tau}e_{\sigma(i)}$. Thinking a little about how matrix multiplication works, we see that $\varphi_{\tau}e_{\sigma(i)}$ is the $\sigma(i)^{th}$ column of φ_{τ} , namely $e_{\tau(\sigma(i))}$. But this is precisely the i^{th} column of $\varphi_{\tau\sigma}$. Hence, $\varphi_{\tau\sigma} = \varphi_{\tau}\varphi_{\sigma}$.