February 20: The Spectral Theorem

Today we prove the following:
Theorem: (Spectral Theorem) Let $(V,\langle\rangle$,$) be an inner product space, T \in \operatorname{End}(V)$ self-adjoint. Then, there exists an orthonormal basis of V consisting of eigenvectors of T.

Remark: Additional information on the orthogonal complement W^{\perp} of a subspace W can be found on the website.

Proof: We proceed by induction on $k=\operatorname{dim} V$.
$k=1$: In this case, any $v \neq 0_{V}$, satisfying $\|v\|=1$, defines an orthonormal basis of V, namely $B=(v)$. Moreover, v is onviously an eigenvector i.e. $[T]_{B}=[\lambda]_{B}$, for some $\lambda \in \mathbb{C}$.

Suppose the statement of the theorem holds for all $1 \leq k<r$: if $\operatorname{dim} V=k$, $T \in \operatorname{End}(V)$ is self-adjoint, then there exists an orthonormal basis of V consisting of eigenvectors of T.
Suppose $k=\operatorname{dim} V=r>1$. Let $\lambda \in \mathbb{C}$ be an eigenvalue of T (which must exist).

- (Case 1) If $E_{\lambda}=\operatorname{ker}\left(T-\lambda i d_{V}\right)=V$ then all nonzero vectors in V are eigenvectors of T, so we can choose any orthonormal basis $B \subset V$.
- (Case 2) Suppose that $E_{\lambda} \neq V$. Then, we have

$$
V=E_{\lambda}+E_{\lambda}^{\perp} \quad \text { and } \quad E_{\lambda} \cap E_{\lambda}^{\perp}=\left\{0_{V}\right\}
$$

In particular, $1 \leq \operatorname{dim} E_{\lambda}^{\perp}<r$.
Lemma 1: For all $v \in E_{\lambda}^{\perp}, T(v) \in E_{\lambda}^{\perp}$.
Proof of Lemma 1: Let $v \in E_{\lambda}^{\perp}$. Then, for any $w \in E_{\lambda}$,

$$
\langle T(v), w\rangle=\langle v, T(w)\rangle=\langle v, \lambda w\rangle=0, \quad \text { since } \lambda w \in E_{\lambda} .
$$

Hence, $T(v) \in E_{\lambda}^{\perp}$. QED
In particular, T restricts to give a linear map $T_{\mid E_{\lambda}^{\perp}}: E_{\lambda}^{\perp} \rightarrow E_{\lambda}^{\perp}, v \mapsto T(v)$. This linear map is still self-adjoint. Hence, by induction, there exists a basis $B \subset E_{\lambda}^{\perp}$ consisting of eigenvectors of $T_{\mid E_{\lambda}^{\perp}}$ (i.e. eigenvectors of T).
Choose any orthonormal basis $B^{\prime} \subset E_{\lambda}$. Then, B^{\prime} consists of eigenvectors of T.

Lemma 2: $B \cup B^{\prime}$ is orthogonal
Proof of Lemma 2: This follows because $B \subset E_{\lambda}^{\perp}$ and $B^{\prime} \subset E_{\lambda}$. QED
In particular, $B \cup B^{\prime}$ is linearly independent. Finally, since $V=E_{\lambda}+E_{\lambda}^{\perp}$, $B \cup B^{\prime}$ spans V and is therefore a basis of V.

This completes the proof of the Spectral Theorem.
Remark: We will see similar proofs throughout this course.
Corollary: Let $A \in M_{k}(\mathbb{C})$ be self-adjoint. Then, there exists a unitary matrix $U \in M_{k}(\mathbb{C})$ such that

$$
U^{*} A U=D \quad \text { is diagonal. }
$$

Proof: Define $T: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}, v \mapsto A v$. Then, T is self-adjoint: $\left[T^{*}\right]_{B}=\overline{[T]}_{B}^{t}=$ $\bar{A}^{t}=A=[T]_{B} \Longrightarrow T=T^{*}$. Hence, by the Spectral Theorem, there exists an orthonormal basis $B \subset \mathbb{C}^{k}$ consisting of eigenvectors of T. Let U be the matrix having columns given by the vectors in B. Then, U is unitary so that $U^{-1}=U^{*}$. Hence, $U^{*} A U=D$ is a diagonal matrix. QED

