

FEBRUARY 20: THE SPECTRAL THEOREM

Today we prove the following:

Theorem: (Spectral Theorem) Let (V, \langle, \rangle) be an inner product space, $T \in \text{End}(V)$ self-adjoint. Then, there exists an orthonormal basis of V consisting of eigenvectors of T.

Remark: Additional information on the **orthogonal complement** W^{\perp} of a subspace W can be found on the website.

Proof: We proceed by induction on $k = \dim V$.

k = 1: In this case, any $v \neq 0_V$, satisfying ||v|| = 1, defines an orthonormal basis of V, namely B = (v). Moreover, v is onviously an eigenvector i.e. $[T]_B = [\lambda]_B$, for some $\lambda \in \mathbb{C}$.

Suppose the statement of the theorem holds for all $1 \leq k < r$: if dim V = k, $T \in \text{End}(V)$ is self-adjoint, then there exists an orthonormal basis of V consisting of eigenvectors of T.

Suppose $k = \dim V = r > 1$. Let $\lambda \in \mathbb{C}$ be an eigenvalue of T (which must exist).

- (Case 1) If $E_{\lambda} = \ker(T \lambda \mathrm{id}_V) = V$ then all nonzero vectors in V are eigenvectors of T, so we can choose any orthonormal basis $B \subset V$.
- (Case 2) Suppose that $E_{\lambda} \neq V$. Then, we have

 $V = E_{\lambda} + E_{\lambda}^{\perp} \qquad \text{and} \qquad E_{\lambda} \cap E_{\lambda}^{\perp} = \{0_V\}$

In particular, $1 \leq \dim E_{\lambda}^{\perp} < r$.

Lemma 1: For all $v \in E_{\lambda}^{\perp}$, $T(v) \in E_{\lambda}^{\perp}$.

Proof of Lemma 1: Let $v \in E_{\lambda}^{\perp}$. Then, for any $w \in E_{\lambda}$,

$$\langle T(v), w \rangle = \langle v, T(w) \rangle = \langle v, \lambda w \rangle = 0, \quad \text{since } \lambda w \in E_{\lambda}.$$

Hence, $T(v) \in E_{\lambda}^{\perp}$. QED

In particular, T restricts to give a linear map $T_{|E_{\lambda}^{\perp}}: E_{\lambda}^{\perp} \to E_{\lambda}^{\perp}$, $v \mapsto T(v)$. This linear map is still self-adjoint. Hence, by induction, there exists a basis $B \subset E_{\lambda}^{\perp}$ consisting of eigenvectors of $T_{|E_{\lambda}^{\perp}}$ (i.e. eigenvectors of T).

Choose any orthonormal basis $B' \subset E_{\lambda}$. Then, B' consists of eigenvectors of T.

Lemma 2: $B \cup B'$ is orthogonal

Proof of Lemma 2: This follows because $B \subset E_{\lambda}^{\perp}$ and $B' \subset E_{\lambda}$. QED

In particular, $B \cup B'$ is linearly independent. Finally, since $V = E_{\lambda} + E_{\lambda}^{\perp}$, $B \cup B'$ spans V and is therefore a basis of V.

This completes the proof of the Spectral Theorem.

Remark: We will see similar proofs throughout this course.

Corollary: Let $A \in M_k(\mathbb{C})$ be self-adjoint. Then, there exists a unitary matrix $U \in M_k(\mathbb{C})$ such that

$$U^*AU = D$$
 is diagonal.

Proof: Define $T : \mathbb{C}^k \to \mathbb{C}^k$, $v \mapsto Av$. Then, T is self-adjoint: $[T^*]_B = \overline{[T]}_B^t = \overline{A}^t = A = [T]_B \implies T = T^*$. Hence, by the Spectral Theorem, there exists an orthonormal basis $B \subset \mathbb{C}^k$ consisting of eigenvectors of T. Let U be the matrix having columns given by the vectors in B. Then, U is unitary so that $U^{-1} = U^*$. Hence, $U^*AU = D$ is a diagonal matrix. QED