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Let (V, 〈, 〉) be an inner product space. Define the function

α : V → V ∗ = {L : V → C | L linear} , v 7→ αv

where
αv : V → C , w 7→ 〈w, v〉

• We showed last lecture that α is injective.

Claim: α surjective

Proof: Let f : V → C be linear. We must find v ∈ V such that

f(w) = αv(w) = 〈w, v〉, for every w ∈ V

Choose an orthonormal basis B = (v1, . . . , vk) ⊂ V . Define

v =
k∑
i=1

f(vi)vi

Then, for any w ∈ V ,

〈w, v〉 = 〈v, w〉

= 〈
k∑
i=1

f(vi)vi, w〉

=
k∑
i=1

f(vi)〈vi, w〉

=
k∑
i=1

f(vi)〈w, vi〉

We have already seen that

[w]B =

〈w, v1〉...
〈w, vk〉

 ⇐⇒ w =
k∑
i=1

〈w, vi〉vi

Hence

f(w) =
k∑
i=1

f(vi)〈w, vi〉 QED

Remark: Observe that the proof for surjectivity relied on choosing a basis. It’s a
FACT that this reliance on an arbitrary choice is unavoidable: there’s no natural
bijection

V → V ∗,
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all bijections require making some arbitrary choice.

In the language of category theory, the dual space functor is not an autoequivalence
of the category of finite dimensional complex vector spaces.

Let T : V → V be linear. Then, for any v ∈ V , the composition

V
T→ V

αv→ C

is linear i.e. αv ◦ T ∈ V ∗. The adjoint of T , is the function

T ∗ : V → V

defined by the following rule: T ∗(v) is the unique element such that αT ∗(v) = αv ◦ T .
The existence of such a unique element follows from the fact that α is a bijection.

In particular, for any v, w ∈ V , we have

αT ∗(v)(w) = αv ◦ T (w) ⇐⇒ 〈w, T ∗(v)〉 = 〈T (w), v〉 (!!!)

Property (!!!) is the defining property of T ∗: if S : V → V is a linear map such that,

〈w, S(v)〉 = 〈T (w), v〉 for every v, w ∈ V ,

then S = T ∗.

Proposition:

1. T ∗ is linear.

2. (S ◦ T )∗ = T ∗ ◦ S∗.

Proof:

1. HW3

2. Let v, w ∈ V . Then,

〈S(T (w)), v〉 = 〈T (w), S∗(v)〉 = 〈w, T ∗(S∗(v))〉

Hence, T ∗ ◦ S∗ satisfies (!!!) so that (S ◦ T )∗ = T ∗ ◦ S∗. QED

Proposition: Let B = (v1, . . . , vk) ⊂ V be an orthonormal basis, T : V → V linear.
Then,

[T ∗]B = [T ]
t

B

Here A
t
denotes the conjugate transpose of the matrix A.

Proof: We have

[T ∗(vi)]B =

〈T
∗(vi), v1〉

...
〈T ∗(vi), vk〉

 =

〈v1, T ∗(vi)〉
...

〈vk, T ∗(vi)〉

 =

〈T (v1), vi〉
...

〈T (vk), vi〉


The transpose of this last column vector is precisely the ith row of [T ]B, the matrix
obtained by conjugating all entries in [T ]B. QED

Definition:
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• A linear map T : V → V is unitary if T−1 = T ∗. This means, for every
v, w ∈ V , that

〈T (v), T (w)〉 = 〈v, T ∗(T (w))〉 = 〈v, w〉

i.e. unitary maps are inner product preserving.

• Say T is self-adjoint if T = T ∗. This means that, for every v, w ∈ V ,

〈T (v), w〉 = 〈v, T (w)〉

• A k × k matrix A is unitary if A−1 = A
t
.

• A k × k matrix is self-ajoint if A = A
t
.

Remark: The identity

A
t
A = Ik

implies that the columns of A are orthonormal. In particular, A is unitary if and
only if its columns are orthonormal.

Proposition: Let T : V → V be self-adjoint. Then, the eigenvalues of T are real.

Proof: Let λ ∈ C be an eigenvalue of T , v ∈ V an eigenvector associated to λ.
Then,

λ〈v, v〉 = 〈T (v), v〉 = 〈v, T (v)〉 = λ〈v, v〉

Since eigenvectors are necessarily nonzero, we find λ = λ i.e. λ ∈ R. QED
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