

FEBRUARY 18: THE ADJOINT

Let (V, \langle, \rangle) be an inner product space. Define the function

$$\alpha: V \to V^* = \{L: V \to \mathbb{C} \mid L \text{ linear}\}, \ v \mapsto \alpha_v$$

where

$$\alpha_v: V \to \mathbb{C}, w \mapsto \langle w, v \rangle$$

• We showed last lecture that α is injective.

Claim: α surjective

Proof: Let $f: V \to \mathbb{C}$ be linear. We must find $v \in V$ such that

$$f(w) = \alpha_v(w) = \langle w, v \rangle, \text{ for every } w \in V$$

Choose an orthonormal basis $B = (v_1, \ldots, v_k) \subset V$. Define

$$v = \sum_{i=1}^{k} \overline{f(v_i)} v_i$$

Then, for any $w \in V$,

$$\langle w, v \rangle = \overline{\langle v, w \rangle}$$
$$= \overline{\langle \sum_{i=1}^{k} \overline{f(v_i)} v_i, w \rangle}$$
$$= \sum_{i=1}^{k} \overline{f(v_i)} \overline{\langle v_i, w \rangle}$$
$$= \sum_{i=1}^{k} f(v_i) \langle w, v_i \rangle$$

We have already seen that

$$[w]_B = \begin{bmatrix} \langle w, v_1 \rangle \\ \vdots \\ \langle w, v_k \rangle \end{bmatrix} \iff w = \sum_{i=1}^k \langle w, v_i \rangle v_i$$

Hence

$$f(w) = \sum_{i=1}^{k} f(v_i) \langle w, v_i \rangle$$
 QED

Remark: Observe that the proof for surjectivity relied on choosing a basis. It's a FACT that this reliance on an arbitrary choice is *unavoidable*: there's no natural bijection

$$V \rightarrow V^*,$$

all bijections require making some arbitrary choice.

In the language of **category theory**, the *dual space functor* is not an autoequivalence of the category of finite dimensional complex vector spaces.

Let $T: V \to V$ be linear. Then, for any $v \in V$, the composition

 $V \xrightarrow{T} V \xrightarrow{\alpha_v} \mathbb{C}$

is linear i.e. $\alpha_v \circ T \in V^*$. The **adjoint of** T, is the function

 $T^*:V\to V$

defined by the following rule: $T^*(v)$ is the unique element such that $\alpha_{T^*(v)} = \alpha_v \circ T$. The existence of such a unique element follows from the fact that α is a bijection.

In particular, for any $v, w \in V$, we have

$$\alpha_{T^*(v)}(w) = \alpha_v \circ T(w) \quad \Longleftrightarrow \quad \langle w, T^*(v) \rangle = \langle T(w), v \rangle \tag{(!!!)}$$

Property (!!!) is the defining property of T^* : if $S: V \to V$ is a linear map such that,

$$\langle w, S(v) \rangle = \langle T(w), v \rangle$$
 for every $v, w \in V$,

then $S = T^*$.

Proposition:

- 1. T^* is linear.
- 2. $(S \circ T)^* = T^* \circ S^*$.

Proof:

- 1. HW3
- 2. Let $v, w \in V$. Then,

$$\langle S(T(w)), v \rangle = \langle T(w), S^*(v) \rangle = \langle w, T^*(S^*(v)) \rangle$$

Hence, $T^* \circ S^*$ satisfies (!!!) so that $(S \circ T)^* = T^* \circ S^*$. QED

Proposition: Let $B = (v_1, \ldots, v_k) \subset V$ be an orthonormal basis, $T : V \to V$ linear. Then,

$$[T^*]_B = \overline{[T]}_B^t$$

Here \overline{A}^t denotes the conjugate transpose of the matrix A.

Proof: We have

$$[T^*(v_i)]_B = \begin{bmatrix} \langle T^*(v_i), v_1 \rangle \\ \vdots \\ \langle T^*(v_i), v_k \rangle \end{bmatrix} = \begin{bmatrix} \overline{\langle v_1, T^*(v_i) \rangle} \\ \vdots \\ \overline{\langle v_k, T^*(v_i) \rangle} \end{bmatrix} = \begin{bmatrix} \overline{\langle T(v_1), v_i \rangle} \\ \vdots \\ \overline{\langle T(v_k), v_i \rangle} \end{bmatrix}$$

The transpose of this last column vector is precisely the i^{th} row of $\overline{[T]}_B$, the matrix obtained by conjugating all entries in $[T]_B$. QED

Definition:

• A linear map $T: V \to V$ is **unitary** if $T^{-1} = T^*$. This means, for every $v, w \in V$, that

$$\langle T(v), T(w) \rangle = \langle v, T^*(T(w)) \rangle = \langle v, w \rangle$$

i.e. unitary maps are inner product preserving.

• Say T is self-adjoint if $T = T^*$. This means that, for every $v, w \in V$,

$$\langle T(v), w \rangle = \langle v, T(w) \rangle$$

- A $k \times k$ matrix A is **unitary** if $A^{-1} = \overline{A}^t$.
- A $k \times k$ matrix is self-ajoint if $A = \overline{A}^t$.

Remark: The identity

$$\overline{A}^t A = \mathbb{I}_k$$

implies that the columns of A are orthonormal. In particular, A is unitary if and only if its columns are orthonormal.

Proposition: Let $T: V \to V$ be self-adjoint. Then, the eigenvalues of T are real.

Proof: Let $\lambda \in \mathbb{C}$ be an eigenvalue of $T, v \in V$ an eigenvector associated to λ . Then,

$$\lambda \langle v, v \rangle = \langle T(v), v \rangle = \langle v, T(v) \rangle = \overline{\lambda} \langle v, v \rangle$$

Since eigenvectors are necessarily nonzero, we find $\lambda = \overline{\lambda}$ i.e. $\lambda \in \mathbb{R}$. QED