February 18: The Adjoint

Let $(V,\langle\rangle$,$) be an inner product space. Define the function$

$$
\alpha: V \rightarrow V^{*}=\{L: V \rightarrow \mathbb{C} \mid L \text { linear }\}, v \mapsto \alpha_{v}
$$

where

$$
\alpha_{v}: V \rightarrow \mathbb{C}, w \mapsto\langle w, v\rangle
$$

- We showed last lecture that α is injective.

Claim: α surjective
Proof: Let $f: V \rightarrow \mathbb{C}$ be linear. We must find $v \in V$ such that

$$
f(w)=\alpha_{v}(w)=\langle w, v\rangle, \quad \text { for every } w \in V
$$

Choose an orthonormal basis $B=\left(v_{1}, \ldots, v_{k}\right) \subset V$. Define

$$
v=\sum_{i=1}^{k} \overline{f\left(v_{i}\right)} v_{i}
$$

Then, for any $w \in V$,

$$
\begin{aligned}
\langle w, v\rangle & =\overline{\langle v, w\rangle} \\
& =\left\langle\sum_{i=1}^{k} \overline{f\left(v_{i}\right)} v_{i}, w\right\rangle \\
& =\sum_{i=1}^{k} f\left(v_{i}\right) \overline{\left\langle v_{i}, w\right\rangle} \\
& =\sum_{i=1}^{k} f\left(v_{i}\right)\left\langle w, v_{i}\right\rangle
\end{aligned}
$$

We have already seen that

$$
[w]_{B}=\left[\begin{array}{c}
\left\langle w, v_{1}\right\rangle \\
\vdots \\
\left\langle w, v_{k}\right\rangle
\end{array}\right] \quad \Longleftrightarrow \quad w=\sum_{i=1}^{k}\left\langle w, v_{i}\right\rangle v_{i}
$$

Hence

$$
f(w)=\sum_{i=1}^{k} f\left(v_{i}\right)\left\langle w, v_{i}\right\rangle \quad \text { QED }
$$

Remark: Observe that the proof for surjectivity relied on choosing a basis. It's a FACT that this reliance on an arbitrary choice is unavoidable: there's no natural bijection

$$
V \rightarrow V^{*}
$$

all bijections require making some arbitrary choice.
In the language of category theory, the dual space functor is not an autoequivalence of the category of finite dimensional complex vector spaces.

Let $T: V \rightarrow V$ be linear. Then, for any $v \in V$, the composition

$$
V \xrightarrow{T} V \xrightarrow{\alpha_{y}} \mathbb{C}
$$

is linear i.e. $\alpha_{v} \circ T \in V^{*}$. The adjoint of T, is the function

$$
T^{*}: V \rightarrow V
$$

defined by the following rule: $T^{*}(v)$ is the unique element such that $\alpha_{T^{*}(v)}=\alpha_{v} \circ T$. The existence of such a unique element follows from the fact that α is a bijection.
In particular, for any $v, w \in V$, we have

$$
\begin{equation*}
\alpha_{T^{*}(v)}(w)=\alpha_{v} \circ T(w) \quad \Longleftrightarrow \quad\left\langle w, T^{*}(v)\right\rangle=\langle T(w), v\rangle \tag{!!!}
\end{equation*}
$$

Property (!!!) is the defining property of $T^{*}:$ if $S: V \rightarrow V$ is a linear map such that,

$$
\langle w, S(v)\rangle=\langle T(w), v\rangle \quad \text { for every } v, w \in V
$$

then $S=T^{*}$.

Proposition:

1. T^{*} is linear.
2. $(S \circ T)^{*}=T^{*} \circ S^{*}$.

Proof:

1. HW3
2. Let $v, w \in V$. Then,

$$
\langle S(T(w)), v\rangle=\left\langle T(w), S^{*}(v)\right\rangle=\left\langle w, T^{*}\left(S^{*}(v)\right)\right\rangle
$$

Hence, $T^{*} \circ S^{*}$ satisfies (!!!) so that $(S \circ T)^{*}=T^{*} \circ S^{*}$. QED
Proposition: Let $B=\left(v_{1}, \ldots, v_{k}\right) \subset V$ be an orthonormal basis, $T: V \rightarrow V$ linear. Then,

$$
\left[T^{*}\right]_{B}=\overline{[T]_{B}^{t}}
$$

Here \bar{A}^{t} denotes the conjugate transpose of the matrix A.
Proof: We have

$$
\left[T^{*}\left(v_{i}\right)\right]_{B}=\left[\begin{array}{c}
\left\langle T^{*}\left(v_{i}\right), v_{1}\right\rangle \\
\vdots \\
\left\langle T^{*}\left(v_{i}\right), v_{k}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
\left\langle v_{1}, T^{*}\left(v_{i}\right)\right\rangle \\
\vdots \\
\frac{\left\langle v_{k}, T^{*}\left(v_{i}\right)\right\rangle}{}
\end{array}\right]=\left[\begin{array}{c}
\left\langle T\left(v_{1}\right), v_{i}\right\rangle \\
\vdots \\
\frac{\left\langle T\left(v_{k}\right), v_{i}\right\rangle}{}
\end{array}\right]
$$

The transpose of this last column vector is precisely the $i^{\text {th }}$ row of $\overline{[T]}_{B}$, the matrix obtained by conjugating all entries in $[T]_{B}$. \quad QED

Definition:

- A linear map $T: V \rightarrow V$ is unitary if $T^{-1}=T^{*}$. This means, for every $v, w \in V$, that

$$
\langle T(v), T(w)\rangle=\left\langle v, T^{*}(T(w))\right\rangle=\langle v, w\rangle
$$

i.e. unitary maps are inner product preserving.

- Say T is self-adjoint if $T=T^{*}$. This means that, for every $v, w \in V$,

$$
\langle T(v), w\rangle=\langle v, T(w)\rangle
$$

- A $k \times k$ matrix A is unitary if $A^{-1}=\bar{A}^{t}$.
- A $k \times k$ matrix is self-ajoint if $A=\bar{A}^{t}$.

Remark: The identity

$$
\bar{A}^{t} A=\mathbb{I}_{k}
$$

implies that the columns of A are orthonormal. In particular, A is unitary if and only if its columns are orthonormal.

Proposition: Let $T: V \rightarrow V$ be self-adjoint. Then, the eigenvalues of T are real.
Proof: Let $\lambda \in \mathbb{C}$ be an eigenvalue of $T, v \in V$ an eigenvector associated to λ. Then,

$$
\lambda\langle v, v\rangle=\langle T(v), v\rangle=\langle v, T(v)\rangle=\bar{\lambda}\langle v, v\rangle
$$

Since eigenvectors are necessarily nonzero, we find $\lambda=\bar{\lambda}$ i.e. $\lambda \in \mathbb{R}$. QED

