February 15: Inner Product Spaces

Let V be a finite dimensional vector space over \mathbb{C}. An inner product on V is a function

$$
\langle,\rangle: V \times V \rightarrow \mathbb{C},(u, v) \mapsto\langle u, v\rangle
$$

such that, for any $u, v, w \in V, \lambda, \mu \in \mathbb{C}$

- $\langle\lambda u+\mu v, w\rangle=\lambda\langle u, w\rangle+\mu\langle v, w\rangle$
- $\langle u, v\rangle=\overline{\langle v, u\rangle}$
- $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0$ if and only if $u=0_{V}$.

Exercise:

1. For any $v \in V,\left\langle 0_{V}, v\right\rangle=\left\langle v, 0_{V}\right\rangle=0$, and
2. For any $u, v, w \in V, \lambda, \mu \in \mathbb{C},\langle w, \lambda u+\mu v\rangle=\bar{\lambda}\langle w, u\rangle+\bar{\mu}\langle w, v\rangle$.

A vector space equipped with an inner product is called an. inner product space.
Define the norm of $v \in V$ to be

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

Remark:

- An inner product is a generalisation of the dot product to complex vector spaces (also called a Hermitian inner product)
- An inner product is a tool we use to think about a complex vector space geometrically.

Example: $\left(\mathbb{C}^{k},\langle\rangle,\right)$, the standard inner product space: where

$$
\left\langle\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k}
\end{array}\right],\left[\begin{array}{c}
b_{1} \\
\vdots \\
v_{k}
\end{array}\right]\right\rangle=\sum_{i=1}^{k} a_{i} \bar{b}_{i}
$$

We call this inner product the standard inner product on \mathbb{C}^{k}.
Definition: Let $(V,\langle\rangle$,$) be an inner product space, v, w \in V$. Say v, w are orthogonal if $\langle v, w\rangle=0$.
A subset $S \subset V$ is orthogonal if $\langle v, w\rangle=0$, for all $v, w \in S$. If S is orthogonal and $\|v\|=1$, for every $v \in S$, we say that S is orthonormal.
Lemma: Let $S \subset V$ be a collection of nonzero vectors. If S is orthogonal then S is linearly independent.

Proof: Suppose we have a linear relation

$$
a_{1} v_{1}+\ldots+a_{r} v_{r}=0_{V}
$$

for $v_{1}, \ldots, v_{r} \in S$, some $a_{1}, \ldots, a_{r} \in \mathbb{C}$. Then, for each $j=1, \ldots, r$,

$$
0=\left\langle\sum_{i=1}^{r} a_{i} v_{i}, v_{j}\right\rangle=\sum_{i=1}^{r} a_{i}\left\langle v_{i}, v_{j}\right\rangle=a_{j}\left\langle v_{j}, v_{j}\right\rangle, \quad \text { because } S \text { is orthogonal. }
$$

Since $v_{j} \neq 0_{V},\left\langle v_{j}, v_{j}\right\rangle \neq 0 \Longrightarrow a_{j}=0$. QED
Fact: Any finite dimensional inner product space $(V,\langle\rangle$,$) contains an orthonormal$ basis. Moreover, if $B=\left(v_{1}, \ldots, v_{k}\right) \subset V$ is an orthonormal basis then

$$
\begin{gathered}
v=\left\langle v, v_{1}\right\rangle v_{1}+\ldots+\left\langle v, v_{k}\right\rangle v_{k}, \quad \text { for every } v \in V, \\
\Longrightarrow[v]_{B}=\left[\begin{array}{c}
\left\langle v, v_{1}\right\rangle \\
\vdots \\
\left\langle v, v_{k}\right\rangle
\end{array}\right] \in \mathbb{C}^{k}
\end{gathered}
$$

Example:

1. The standard basis $S=\left(e_{1}, \ldots, e_{k}\right) \subset \mathbb{C}^{k}$ is orthonormal with respect to the standard inner product.
2. The basis $\left(\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]\right)$ is orthonormal with respect to the standard inner product on \mathbb{C}^{2}.

The Adjoint

For any $v \in V$, we define a linear map

$$
\alpha_{v}: V \rightarrow \mathbb{C}, w \mapsto\langle w, v\rangle
$$

In this way, we define a function

$$
\alpha: V \rightarrow \operatorname{Hom}(V, \mathbb{C})=\{L: V \rightarrow \mathbb{C} \mid L \text { is linear }\}
$$

We call $\operatorname{Hom}(V, \mathbb{C})$ the dual space of V, also denoted V^{*}.
Claim: α is injective.
Proof: If $\alpha(u)=\alpha(v)$ then, for all $w \in V$,

$$
\alpha_{u}(w)=\alpha_{v}(w) \quad \Longrightarrow \quad\langle w, u\rangle=\langle w, v\rangle \quad \Longrightarrow \quad\langle w, u-v\rangle=0
$$

In particular, for $w=u-v$, we find

$$
\langle u-v, u-v\rangle=0 \quad \Longrightarrow \quad u-v=0_{V} \quad \Longrightarrow \quad u=v . \quad \mathrm{QED}
$$

