February 13: Eigenthings

Let $T: V \rightarrow V$ be a linear map, where V is a finite-dimensional vector space over \mathbb{C}. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of T if there exists $v \in V, v \neq 0_{V}$, satisfying $T(v)=\lambda v$. We call such a nonzero vector an eigenvector associated to λ.
Remark: It's important to remember that eigenvalues/eigenvectors always come in pairs - you can't have one without the other.

Observe that

$$
\begin{aligned}
\lambda \text { is an e-value of } T & \Leftrightarrow\left(T-\lambda \operatorname{id}_{V}\right)(v)=0 \\
& \Leftrightarrow \operatorname{ker}\left(T-\operatorname{id}_{V}\right) \neq\left\{0_{V}\right. \\
& \Leftrightarrow T-\operatorname{id}_{V} \text { not invertible } \\
& \Leftrightarrow \operatorname{det}\left([T]_{B}-\lambda \operatorname{id}_{V}\right) \neq 0, \text { for any basis } B \subset V .
\end{aligned}
$$

This observation leads to the following definition:
Definition/Proposition: Let $T: V \rightarrow V$ be a linear map, $B \subset V$ a basis. Then, the characteristic polynomial of T is

$$
\chi_{T}(\lambda)=\operatorname{det}\left(T-\lambda_{i d_{V}}\right) \in \mathbb{C}[\lambda]
$$

The characteristic polynomial satisfies the following properties:

- $\operatorname{deg} \chi_{T}(\lambda)=\operatorname{dim} V$,
- the eigenvalues of T are precisely the roots of $\chi_{T}(\lambda)$,
- $\chi_{T}(\lambda)$ is independent of B.

The Fundamental Theorem of Algebra states: let $f(t) \in \mathbb{C}[t]$. Then, $f(t)=(t-$ c) $p(t)$, for some $c \in \mathbb{C}, p(t) \in \mathbb{C}[t], \operatorname{deg} p=\operatorname{deg} f-1$ i.e. all complex polynomials admit a complex root. In particular, any linear map $T: V \rightarrow V$ admits an eigenvalue.
Definition: If $\lambda \in \mathbb{C}$ is an eigenvalue of T then define

$$
E_{\lambda}=\operatorname{ker}\left(T-\lambda \mathrm{id}_{V}\right)
$$

the λ-eigenspace of T. Observe that E_{λ} is a subspace.
Example: Consider the map

$$
T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3},\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right]
$$

and the basis

$$
B=\left(\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

Then,

$$
A=[T]_{B}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\chi_{T}(\lambda)=\operatorname{det}\left(A-\lambda \mathbb{I}_{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & -1 & 0 \\
1 & -\lambda & -1 \\
0 & 0 & 1-\lambda
\end{array}\right]=1-\lambda^{3}
$$

Using the standard basis $\left(S=\left(e_{1}, e_{2}, e_{3}\right) \subset \mathbb{C}^{3}\right.$, we find

$$
[T]_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

In a similar way, we can show that

$$
\operatorname{det}\left([T]_{S}-\lambda \mathbb{I}_{3}\right)=1-\lambda^{3}
$$

as claimed.
Hence, T admits three eigenvalues $1, \varepsilon, \varepsilon^{2}$, where $\varepsilon=e^{2 \pi i / 3}$. We have

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right), \quad E_{\varepsilon}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
\varepsilon \\
\varepsilon^{2}
\end{array}\right]\right), \quad E_{\varepsilon^{2}}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
\varepsilon^{2} \\
\varepsilon
\end{array}\right]\right)
$$

Diagonalisation Let $T: V \rightarrow V$ be a linear map, V a finite-dimensional vector space over \mathbb{C}. Suppose we have a basis $B=\left(v_{1}, \ldots, v_{k}\right) \subset V$ consisting of eigenvectors of T; say v_{i} has associated eigenvalue λ_{i}. Then,

$$
[T]_{B}=\left[\begin{array}{lll}
{\left[T\left(v_{1}\right)\right]_{B}} & \cdots & {\left[T\left(v_{k}\right)\right]_{B}}
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \lambda_{k}
\end{array}\right]=D
$$

is diagonal.
Let $C \subset V$ be any other basis of V, write $A=[T]_{C}$. Then,

$$
\begin{gathered}
{[T(v)]_{C}=[T]_{C}[v]_{C}=A[v]_{C}, \quad \text { for all } v \in V} \\
\Longrightarrow[T(v)]_{B}=P_{B \leftarrow C}[T(v)]_{C}=P_{B \leftarrow C} A[v]_{C}=P_{B \leftarrow C} A P_{C \leftarrow B}[v]_{B}
\end{gathered}
$$

Therefore, by the Amazing Property for $[T]_{B}$, we must have

$$
D=[T]_{B}=P_{B \leftarrow C} A P_{C \leftarrow B}
$$

That is, if $P=P_{C \leftarrow B}$ then

$$
D=P^{-1} A P
$$

Example: Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be as above, $S \subset \mathbb{C}^{3}$ the standard basis, $A=[T]_{S}$. If we let

$$
B=\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
\varepsilon \\
\varepsilon^{2}
\end{array}\right],\left[\begin{array}{c}
1 \\
\varepsilon^{2} \\
\varepsilon
\end{array}\right]\right)
$$

and

$$
P=P_{S \leftarrow B}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \varepsilon & \varepsilon^{2} \\
1 & \varepsilon^{2} & \varepsilon
\end{array}\right]
$$

then

$$
P^{-1} A P=D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon^{2}
\end{array}\right]
$$

