February 11: Linear Algebra Review

Recall: let $T: V \rightarrow W$ be a linear map, $B=\left(v_{1}, \ldots, v_{k}\right) \subset V, C \subset W$ bases. Then, the matrix of T with respect to B, C is the unique $l \times k$ matrix $[T]_{B}^{C}$ satisfying

$$
[T(v)]_{C}=[T]_{B}^{C}[v]_{B}, \quad \text { for any } v \in V
$$

(AMAZING PROPERTY)

- Why unique? Let A be a $l \times k$ matrix satisfying

$$
[T(v)]_{C}=A[v]_{B}, \quad \text { for any } v \in V
$$

Then, for each $i=1, \ldots, k$,

$$
\left[T\left(v_{i}\right)\right]_{C}=A\left[v_{i}\right]_{B}
$$

Observe that $\left[v_{i}\right]_{B}=e_{i}$ is the $i^{\text {th }}$ standard basis vector. Hence, $A\left[v_{i}\right]_{B}=A e_{i}$ is the $i^{t h}$ column of A. Therefore, the $i^{t h}$ column of any matrix satisfying the AMAZING PROPERTY must be equal to $\left[T\left(v_{i}\right)\right]_{C}$.

- Why must such a matrix exist? Let $C=\left(w_{1}, \ldots, w_{l}\right)$. Then, if $v=\sum_{i=1}^{k} a_{i} v_{i} \in V$, we have

$$
T(v)=\sum_{i=1}^{k} a_{i} T\left(v_{i}\right)
$$

Hence, if

$$
T\left(v_{i}\right)=\sum_{j=1}^{l} m_{j i} w_{j}, \quad \text { for } i=1, \ldots, k
$$

then

$$
T(v)=\sum_{i=1}^{k} a_{i} T\left(v_{i}\right)=\sum_{i=1}^{k} \sum_{j=1}^{l} a_{i} m_{j i} w_{j}
$$

That is,

$$
[T(v)]_{C}=\left[\begin{array}{c}
\sum_{i=1}^{k} a_{i} m_{1 i} \\
\vdots \\
\sum_{i=1}^{k} a_{i} m_{l i}
\end{array}\right]
$$

It's straightforward to check that this column vector is the product of $[T]_{B}^{C}=\left[m_{j i}\right]_{j, i}$
(i.e. j indexes rows, i indexes columns) with $[v]_{B}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{k}\end{array}\right]$.

Example: Let $V=W=\mathbb{C}^{3}, B=C=\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left(v_{1}, v_{2}, v_{3}\right)$.
Define the linear map

$$
T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3},\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \mapsto\left[\begin{array}{l}
a_{2} \\
a_{3} \\
a_{1}
\end{array}\right]
$$

Then, to determine $[T]_{B}$ we must compute $\left[T\left(v_{i}\right)\right]_{B}$, for $i=1,2,3$. Can do this as follows: consider the 3×6 matrix
$\left[v_{1} v_{2} v_{3} T\left(v_{1}\right) T\left(v_{2}\right) T\left(v_{3}\right)\right]=\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & 0 \\ - & -1 & 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 1 & 1\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
The right-hand 3×3 matrix is $[T]_{B}$!

$$
[T]_{B}=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Remark: The above approach generalises to determine $[T]_{B}^{C}$ whenever $V=\mathbb{C}^{k}$, $W=\mathbb{C}^{l}$: consider the $l \times 2 k$ matrix and row-reduce

$$
\left[v_{1} \cdots v_{k} \mid T\left(v_{1}\right) \cdots T\left(v_{k}\right)\right] \sim\left[\mathbb{I}_{3} \mid[T]_{B}^{C}\right.
$$

The right-hand $l \times k$ matrix is $[T]_{B}^{C}$.
Proposition: If $T_{1}: V \rightarrow W$ and $T_{2}: W \rightarrow X$ are linear maps, $B \subset V, C \subset W, D \subset$ X are bases, then

$$
\left[T_{2} T_{1}\right]_{B}^{D}=\left[T_{2}\right]_{C}^{D}\left[T_{1}\right]_{B}^{C}
$$

Proof: It suffices to show that the right-hand side of the claimed identity satisfies the AMAZING PROPERTY defining $\left[T_{2} T_{1}\right]_{B}^{D}$: for any $v \in V$,

$$
\left[T_{2}\left(T_{1}(v)\right)\right]_{D}=\left[T_{2}\right]_{C}^{D}\left[T_{2}\right]_{B}^{C}[v]_{B}
$$

Let $v \in V$. Then,

$$
\begin{aligned}
{\left[T_{2}\right]_{C}^{D}\left[T_{1}\right]_{B}^{C}[v]_{B} } & =\left[T_{2}\right]_{C}^{D}\left[T_{1}(v)\right]_{C}, \quad \text { by AMAZING PROPERTY for } T_{1} \\
& =\left[T_{2}\left(T_{1}(v)\right)\right]_{D}, \quad \text { by AMAZING PROPERTY for } T_{2}
\end{aligned}
$$

The result follows.
Given two bases $B=\left(v_{1}, \ldots, v_{k}\right), C \subset V$, define the change of basis matrix from B to C to be

$$
P_{C \leftarrow B}=\left[\mathrm{id}_{V}\right]_{B}^{C}=\left[\left[v_{1}\right]_{C} \cdots\left[v_{k}\right]_{C}\right]
$$

Proposition: $P_{C \leftarrow B}$ is invertible with inverse $P_{B \leftarrow C}$
Proof: We have

$$
P_{C \leftarrow B} P_{B \leftarrow C}=\left[\mathrm{id}_{V}\right]_{B}^{C}\left[\mathrm{id}_{V}\right]_{C}^{B}=\left[\mathrm{id}_{V} \circ \mathrm{id}_{V}\right]_{C}=\left[\mathrm{id}_{V}\right]_{C}=\mathbb{I}_{k}
$$

Remark: for any $v \in V$, we have

$$
[v]_{C}=P_{C \leftarrow B}[v]_{B}
$$

Example: Let $B=\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right), C=\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)$.

Can compute $P_{C \leftarrow B}$ by row-reducing

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]
$$

Then,

$$
P_{C \leftarrow B}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

