

Name: SOLUTION

DIAGNOSTIC TEST: MARCH 11, 2019

Throughout this test:

- G is a finite group, unless otherwise specified;
- U, V, W etc. are finite dimensional vector spaces over \mathbb{C} , unless otherwise specified
- \langle,\rangle denotes an inner product,
- ρ, φ, ψ etc. are representations of G.

DEFINITIONS

1. Let (ρ, V) be a representation of G. Define what it means for a subspace $U \subseteq V$ to be a subrepresentation.

Solution: For every $u \in U, g \in G, \rho_g(u) \in U$.

2. Define the direct sum representation $\rho \oplus \varphi$.

Solution: Let (ρ, V) , (φ, W) be the representations. The direct sum representation is the homomorphism

$$\rho \oplus \varphi : G \to \mathrm{GL}(V \times W)$$

where, for $(v, w) \in V \times W$, $g \in G$, $(\rho \oplus \varphi)_g(v, w) = (\rho_g(v), \varphi_g(w))$.

3. Define what it means for two representations ρ and φ to be equivalent.

Solution: Let (ρ, V) , (φ, W) be the representations. There exists an invertible linear map $T: V \to W$ such that $\varphi_g \circ T = T \circ \rho_g$, for every $g \in G$.

- 4. Define what it means for a nonzero representation ρ to be *irreducible*. Solution: If $U \subseteq V$ is a subrepresentation then either $U = \{0_V\}$ or U = V.
- 5. Let (V, \langle, \rangle) be an inner product space. Define what it means for a representation $\rho : G \to GL(V)$ to be unitary.

Solution: For every $g \in G$, $\rho_g : V \to V$ is unitary i.e. $\langle \rho_g(u), \rho_g(v) \rangle = \langle u, v \rangle$, for every $u, v \in V, g \in G$.

TRUE/FALSE, MULTIPLE CHOICE

- 1. Let (ρ, V) be a degree 2 representation. Suppose there exists a basis $B \subset V$ such that $[\rho_g]_B$ is upper-triangular, for every $g \in G$. Circle the true statement(s):
 - (a) ρ is indecomposable.
 - (b) There exists a degree 1 subrepresentation.
 - (c) ρ is irreducible.
 - (d) All of the above.

Solution: (b) is the only correct statement.

- 2. Let $(\rho, V), (\varphi, U), (\psi, W)$ be nonzero representations of G. Suppose that $\rho \simeq \varphi \oplus \psi$. Circle the true statement(s):
 - (a) for every basis $B \subset V$, the matrices $[\rho_g]_B$ are upper-triangular, for every $g \in G$.
 - (b) for every basis $B \subset V$, the matrices $[\rho_q]_B$ are block diagonal, for every $g \in G$.
 - (c) there exists a basis $B \subset V$ such that $[\rho_g]_B$ is block diagonal, for every $g \in G$.
 - (d) there exists a subrepresentation $V_1 \subseteq V$ such that $\rho_{|_{V_1}} \simeq \varphi$.
 - (e) All of the above.

Solution: (c), (d) are the only correct statements.

3. True/False:

- (a) Let $U \subseteq V$ be a proper subrepresentation, i.e. $U \neq \{0_V\}$ and $U \neq V$. Then, there exists a subrepresentation $W \subseteq V$ such that $V = U \oplus W$. Solution: True - Let (ρ, V) be the representation. Choose inner product with respect to which ρ is unitary; take $W = U^{\perp}$.
- (b) Let (ρ, V) be irreducible. Then, there exists a basis $B \subset V$ such that $[\rho_g]_B$ is lower-triangular, for every $g \in G$. Solution: False - if $B = (v_1, \ldots, v_k)$ then $[\rho_g]_B$ being lower-triangular means $\operatorname{span}(v_k)$ is a subrepresentation. If deg V > 1 then this can't hold.
- (c) Let ρ be a representation of G on the inner product space (V, \langle, \rangle) . Then, ρ is unitary. Solution: False - we saw an example for $\mathbb{Z}/3\mathbb{Z}$ i.e. a degree 2 representation of $\mathbb{Z}/3\mathbb{Z}$ on \mathbb{C}^2 equipped with standard inner product that was not unitary.
- (d) Let (ρ, V) be an irreducible representation of degree > 1. Then, there does not exist a basis $B \subset V$ such that $[\rho_g]_B$ is diagonal, for every $g \in G$. Solution: True - if such a basis $B = (v_1, \ldots, v_k)$ did exist then $\operatorname{span}(v_1)$ is a subrepresentation.
- (e) Let (ρ, V) be a representation of G. Then,

$$\varphi: G \to \operatorname{GL}(\mathbb{C}), \ g \mapsto \det \rho_g$$

defines a representation of G. Here, det $\rho_g = \det[\rho_g]_B$, for some basis $B \subset V$: it's a fact that this definition is independent of the basis B.

Solution: True - for every $g, h \in G$, $\varphi_{gh} = \det \rho_{gh} = \det(\rho_g \rho_h) = \det(\rho_g) \det(\rho_h) = \varphi_g \varphi_h$.

(f) Let (ρ, V) be a representation of the non-abelian group G. Then, $\varphi : G \to \operatorname{GL}(V)$, $g \mapsto \rho_g \circ \rho_g$ is a representation.

Solution: False - this one was way trickier than anticipated, apologies... Here's a counterexample: consider standard representation ρ of S_3 on \mathbb{C}^3 (this is not the usual notation...). Then, for every 2-cycle $g \in S_3$ we would have $\varphi_g = \rho_g \circ \rho_g = \rho_{g^2} = \rho_e = \mathbb{I}_3$. Note that $\varphi_{(123)} = \rho_{(123)^2} = \rho_{(132)}$. Then, noting that (123)(23) = (12), we would have $\varphi_{(123)}\varphi_{(23)} = \rho_{(132)} \neq \rho_e = \varphi_{(12)} = \varphi_{(123)(23)}$. This shows φ is not a homomorphism.