Spring 2019
Contact: gwmelvin@colby.edu
Name: SOLUTION

Diagnostic Test: March 11, 2019

Throughout this test:

- G is a finite group, unless otherwise specified;
- U, V, W etc. are finite dimensional vector spaces over \mathbb{C}, unless otherwise specified
- \langle,$\rangle denotes an inner product,$
- ρ, φ, ψ etc. are representations of G.

Definitions

1. Let (ρ, V) be a representation of G. Define what it means for a subspace $U \subseteq V$ to be a subrepresentation.
Solution: For every $u \in U, g \in G, \rho_{g}(u) \in U$.
2. Define the direct sum representation $\rho \oplus \varphi$.

Solution: Let $(\rho, V),(\varphi, W)$ be the representations. The direct sum representation is the homomorphism

$$
\rho \oplus \varphi: G \rightarrow \mathrm{GL}(V \times W)
$$

where, for $(v, w) \in V \times W, g \in G,(\rho \oplus \varphi)_{g}(v, w)=\left(\rho_{g}(v), \varphi_{g}(w)\right)$.
3. Define what it means for two representations ρ and φ to be equivalent.

Solution: Let $(\rho, V),(\varphi, W)$ be the representations. There exists an invertible linear map $T: V \rightarrow W$ such that $\varphi_{g} \circ T=T \circ \rho_{g}$, for every $g \in G$.
4. Define what it means for a nonzero representation ρ to be irreducible.

Solution: If $U \subseteq V$ is a subrepresentation then either $U=\left\{0_{V}\right\}$ or $U=V$.
5. Let $(V,\langle\rangle$,$) be an inner product space. Define what it means for a representation \rho: G \rightarrow \mathrm{GL}(V)$ to be unitary.
Solution: For every $g \in G, \rho_{g}: V \rightarrow V$ is unitary i.e. $\left\langle\rho_{g}(u), \rho_{g}(v)\right\rangle=\langle u, v\rangle$, for every $u, v \in V, g \in G$.

True/False, Multiple Choice

1. Let (ρ, V) be a degree 2 representation. Suppose there exists a basis $B \subset V$ such that $\left[\rho_{g}\right]_{B}$ is upper-triangular, for every $g \in G$. Circle the true statement(s):
(a) ρ is indecomposable.
(b) There exists a degree 1 subrepresentation.
(c) ρ is irreducible.
(d) All of the above.

Solution: (b) is the only correct statement.
2. Let $(\rho, V),(\varphi, U),(\psi, W)$ be nonzero representations of G. Suppose that $\rho \simeq \varphi \oplus \psi$. Circle the true statement(s):
(a) for every basis $B \subset V$, the matrices $\left[\rho_{g}\right]_{B}$ are upper-triangular, for every $g \in G$.
(b) for every basis $B \subset V$, the matrices $\left[\rho_{g}\right]_{B}$ are block diagonal, for every $g \in G$.
(c) there exists a basis $B \subset V$ such that $\left[\rho_{g}\right]_{B}$ is block diagonal, for every $g \in G$.
(d) there exists a subrepresentation $V_{1} \subseteq V$ such that $\rho_{\left.\right|_{V_{1}}} \simeq \varphi$.
(e) All of the above.

Solution: (c), (d) are the only correct statements.

3. True/False:

(a) Let $U \subseteq V$ be a proper subrepresentation, i.e. $U \neq\left\{0_{V}\right\}$ and $U \neq V$. Then, there exists a subrepresentation $W \subseteq V$ such that $V=U \oplus W$.
Solution: True - Let (ρ, V) be the representation. Choose inner product with respect to which ρ is unitary; take $W=U^{\perp}$.
(b) Let (ρ, V) be irreducible. Then, there exists a basis $B \subset V$ such that $\left[\rho_{g}\right]_{B}$ is lowertriangular, for every $g \in G$.
Solution: False - if $B=\left(v_{1}, \ldots, v_{k}\right)$ then $\left[\rho_{g}\right]_{B}$ being lower-triangular means span $\left(v_{k}\right)$ is a subrepresentation. If $\operatorname{deg} V>1$ then this can't hold.
(c) Let ρ be a representation of G on the inner product space $(V,\langle\rangle$,$) . Then, \rho$ is unitary.

Solution: False - we saw an example for $\mathbb{Z} / 3 \mathbb{Z}$ i.e. a degree 2 representation of $\mathbb{Z} / 3 \mathbb{Z}$ on \mathbb{C}^{2} equipped with standard inner product that was not unitary.
(d) Let (ρ, V) be an irreducible representation of degree >1. Then, there does not exist a basis $B \subset V$ such that $\left[\rho_{g}\right]_{B}$ is diagonal, for every $g \in G$.
Solution: True - if such a basis $B=\left(v_{1}, \ldots, v_{k}\right)$ did exist then $\operatorname{span}\left(v_{1}\right)$ is a subrepresentation.
(e) Let (ρ, V) be a representation of G. Then,

$$
\varphi: G \rightarrow \mathrm{GL}(\mathbb{C}), g \mapsto \operatorname{det} \rho_{g}
$$

defines a representation of G. Here, $\operatorname{det} \rho_{g}=\operatorname{det}\left[\rho_{g}\right]_{B}$, for some basis $B \subset V$: it's a fact that this definition is independent of the basis B.
Solution: True - for every $g, h \in G, \varphi_{g h}=\operatorname{det} \rho_{g h}=\operatorname{det}\left(\rho_{g} \rho_{h}\right)=\operatorname{det}\left(\rho_{g}\right) \operatorname{det}\left(\rho_{h}\right)=\varphi_{g} \varphi_{h}$.
(f) Let (ρ, V) be a representation of the non-abelian group G. Then, $\varphi: G \rightarrow \mathrm{GL}(V), g \mapsto$ $\rho_{g} \circ \rho_{g}$ is a representation.
Solution: False - this one was way trickier than anticipated, apologies... Here's a counterexample: consider standard representation ρ of S_{3} on \mathbb{C}^{3} (this is not the usual notation...). Then, for every 2 -cycle $g \in S_{3}$ we would have $\varphi_{g}=\rho_{g} \circ \rho_{g}=\rho_{g^{2}}=\rho_{e}=\mathbb{I}_{3}$. Note that $\varphi_{(123)}=\rho_{(123)^{2}}=\rho_{(132)}$. Then, noting that (123)(23) $=$ (12), we would have $\varphi_{(123)} \varphi_{(23)}=\rho_{(132)} \neq \rho_{e}=\varphi_{(12)}=\varphi_{(123)(23)}$. This shows φ is not a homomorphism.

