

Colby

Contact: gwmelvin@colby.edu

INNER PRODUCT SPACES

Throughout this note (V, \langle, \rangle) is a finite dimensional inner product space over \mathbb{C} .

GRAM-SCHMIDT ALGORITHM

Let $\{v_1, \ldots, v_k\} \subset V$ be a linearly independent subset. The **Gram-Schmidt Algorithm** is a procedure to produce an orthogonal subset $\{u_1, \ldots, u_k\} \subset V$ with the property that

$$\operatorname{span}(v_1,\ldots,v_i)=\operatorname{span}(u_1,\ldots,u_i), \qquad i=1,\ldots,k$$

Proceed as follows:

- Define $u_1 = v_1$.
- Having defined u_1, \ldots, u_{i-1} , we define

$$u_i = v_i - \sum_{i=1}^{i-1} \frac{\langle v_i, u_j \rangle}{\langle u_j, u_j \rangle} u_j$$

We will now show that the set $\{u_1,\ldots,u_k\}$ is orthogonal: first, observe that

$$\langle u_2, u_1 \rangle = \langle v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1, u_1 \rangle = \langle v_2, u_1 \rangle - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} \langle u_1, u_1 \rangle = 0.$$

Let j > 1. Suppose, for the purposes of induction, that $\langle u_j, u_i \rangle = 0$, for all $1 \le i < j$. Then, for $1 \le i < j + 1 \le k$, we have

$$\langle u_{j+1}, u_i \rangle = \langle v_{j+1} - \sum_{r=1}^j \frac{\langle v_{j+1}, u_r \rangle}{\langle u_r, u_r \rangle} u_r, u_i \rangle = \langle v_{j+1}, u_i \rangle - \sum_{r=1}^j \frac{\langle v_{j+1}, u_r \rangle}{\langle u_r, u_r \rangle} \langle u_r, u_i \rangle$$

Since $1 \le i < j+1$, we have, by induction, $\langle u_r, u_i \rangle = 0$, for $1 \le r \le j$, $r \ne i$. Hence,

$$\langle u_{j+1}, u_i \rangle = \langle v_{j+1}, u_i \rangle - \frac{\langle v_{j+1}, u_i \rangle}{\langle u_i, u_i \rangle} \langle u_i, u_i \rangle = 0.$$

Therefore, using induction, we have shown that the set $\{u_1, \ldots, u_k\}$ is orthogonal.

Theorem. Let (V, \langle, \rangle) be a finite dimensional inner product space. Then, there exists an orthonormal basis of V.

Proof: Let $B' \subset V$ be any basis of V. Then, apply the Gram-Schmidt Algorithm to obtain an orthogonal set $B = \{u_1, \ldots, u_k\} \subset V$. Hence, B is linearly independent. Since $|B| = |B'| = \dim V$, and B is linearly independent, B is a basis of V. Then, the set

$$\left\{\frac{u_1}{||u_1||},\ldots,\frac{u_k}{||u_k||}\right\}$$

is an orthonormal basis of V.

ORTHOGONAL PROJECTIONS

Let $W \subset V$ be a subspace, $v \in V$. Define the **projection of** v **onto** W, denoted $\operatorname{proj}_W(v)$, as follows: choose an orthonormal basis $(w_1, \ldots, w_r) \subset W$. Define

$$\operatorname{proj}_{W}(v) = \sum_{i=1}^{r} \langle v, w_{i} \rangle w_{i}$$

By definition, $\operatorname{proj}_W(v) \in W$.

Proposition 1. $w' = \operatorname{proj}_W(v) \in W$ is the unique element in W such that ||v - w|| > ||v - w'||, for all $w \in W, w \neq w'$.

Proof: Let $w' = \operatorname{proj}_{W}(v) = \sum_{i=1}^{r} \langle v, w_i \rangle w_i$.

• Claim 1. $\langle v - \operatorname{proj}_W(v), w \rangle = 0$, for any $w \in W$: indeed, let $w = \sum_{i=1}^r a_i w_i$. Then,

$$\begin{split} \langle v - \mathrm{proj}_W(v), w \rangle &= \langle v, w \rangle - \langle \mathrm{proj}_W(v), w \rangle \\ &= \langle v, \sum_{i=1}^r a_i w_i \rangle - \langle \sum_{i=1}^r \langle v, w_i \rangle w_i, \sum_{i=1}^r a_i w_i \rangle \\ &= \sum_{i=1}^r \overline{a}_i \langle v, w_i \rangle - \sum_{i=1}^r \sum_{j=1}^r \langle v, w_i \rangle \overline{a}_j \langle w_i, w_j \rangle \\ &= \sum_{i=1}^r \overline{a}_i \langle v, w_i \rangle - \sum_{i=1}^r \langle v, w_i \rangle \overline{a}_i, \quad \text{since } \langle w_i, w_j \rangle = \begin{cases} 1, & i = j, \\ 0, & i \neq j \end{cases} \\ &- 0 \end{split}$$

• Claim 2. (Pythagoras Theorem) Suppose $v, w \in V$ and $\langle v, w \rangle = 0$. Then,

$$||v||^2 + ||w||^2 = ||v - w||^2$$

This follows from a straightforward computation of $||v-w||^2 = \langle v-w, v-w \rangle$

Let $w \in W$, $w \neq w'$. Then, $w - w' \in W$ so that, by Claim 1, $\langle v - w', w - w' \rangle = 0$. By Claim 2, we find

$$||v - w'||^2 + ||w - w'||^2 = ||v - w||^2$$

. Hence, for any $w \neq w'$,

$$||v - w'||^2 < ||v - w||^2 \implies ||v - w'|| < ||v - w||.$$

Remark. Proposition 1 implies that the projection of v onto W is independent of the choice of orthonormal basis B used to define it.

ORTHOGONAL COMPLEMENT

Let $W \subset V$ be a subset. Define the **orthogonal complement of** W to be

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0, \text{ for all } w \in W \}$$

Proposition 2.

- 1. W^{\perp} is a subspace.
- 2. $W \cap W^{\perp} = \{0_V\}.$
- 3. $V = W + W^{\perp}$ i.e. for any $v \in V$, there exist $w \in W$ and $z \in W^{\perp}$ such that v = w + z. In fact, w, z are unique.

Proof:

1. Since $\langle 0_V, v \rangle = 0$, for any $v \in V$, $0_V \in W^{\perp}$. Now, let $u, v \in W^{\perp}$, $a, b \in \mathbb{C}$, $w \in W$. Then,

$$\langle au + bv, w \rangle = a\langle u, w \rangle + b\langle v, w \rangle = 0 + 0 = 0$$

Hence, $au + bv \in W^{\perp}$.

2. Let $v \in W \cap W^{\perp}$. Then,

$$\langle v, v \rangle = 0 \implies v = 0_V$$

3. Let $v \in V$. Then,

$$v = \operatorname{proj}_{W}(v) + (v - \operatorname{proj}_{W}(v))$$

Claim 1 shows that $v - \operatorname{proj}_W(v) \in W^{\perp}$. Moreover, $\operatorname{proj}_W(v) \in W$, by construction. Hence, $V = W + W^{\perp}$.

Suppose v = w + z = w' + z', with $w, w' \in W$, $z, z' \in W^{\perp}$. Then,

$$w + z = w' + z' \implies w - w' = z' - z \in W \cap W^{\perp} = \{0_V\}$$

Hence, $w - w' = 0_V$ and $z' - z = 0_V$, so that w = w', z = z' must be unique.