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INNER PRODUCT SPACES

Throughout this note (V, (,)) is a finite dimensional inner product space over C.
GRAM-SCHMIDT ALGORITHM

Let {vi,...,u} C V be a linearly independent subset. The Gram-Schmidt Algorithm is a
procedure to produce an orthogonal subset {uy,...,ux} C V with the property that

span(vy,...,v;) = span(ug, ..., u;), i=1,...,k
Proceed as follows:
e Define u; = v;.

e Having defined uy, ..., u;_1, we define

We will now show that the set {us,...,u;} is orthogonal: first, observe that

(v, u1)
(1, uq)

(v, u1)
(w1, us)

(ug,u1) = (va — ur, uy) = (va, uy) — (ur,u1) = 0.
Let j > 1. Suppose, for the purposes of induction, that (u;,u;) = 0, for all 1 < ¢ < j. Then, for

1 <1< 7+1<k, we have

J J
Viy1, U Viy1, U
(W1, u;) = (Vj41 — Z Wun i) = (Vj41, i) — Z WWMUQ

r=1 r=1

Since 1 <i < j + 1, we have, by induction, (u,,u;) =0, for 1 <r < j, r # i. Hence,

(Vjt1, us)

i, ) (ug, u;) = 0.

<Uj+1>uz'> = <Uj+1>ui> -

Therefore, using induction, we have shown that the set {uy,...,u;} is orthogonal.

Theorem. Let (V,(,)) be a finite dimensional inner product space. Then, there exists an orthonor-
mal basis of V.

Proof: Let B’ C V be any basis of V. Then, apply the Gram-Schmidt Algorithm to obtain an
orthogonal set B = {uy,...,ux} C V. Hence, B is linearly independent. Since |B| = |B'| = dimV/,
and B is linearly independent, B is a basis of V. Then, the set
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is an orthonormal basis of V.

ORTHOGONAL PROJECTIONS

Let W C V be a subspace, v € V. Define the projection of v onto W, denoted projy, (v), as
follows: choose an orthonormal basis (wy, ..., w,) C W. Define

T

projiy (v) = (v, wi)w;

i=1
By definition, projy, (v) € W.

Proposition 1. w' = projy, (v) € W is the unique element in W such that ||v — w|| > ||v — w'||, for
allw e W,w # w'.

Proof: Let w' = projy, (v) = > ., (v, w;)w;.
e Claim 1. (v — projy (v),w) = 0, for any w € W: indeed, let w = >_._, a;w;. Then,

<U - prOjW(U)a w> = <U’ w) - <pr0jW(v), w>

= (v, Z agwi) = (> (v, wi)w, Z a;w;)

1=

= Zai<1}, wl> — Z Z<Ua wi>aj <wi7 wj>

i=1 j=1

i ) _ ) 1, 1=y,
a;{v, w;) — v, w;)a;, since (w;, w;) = -
ILTEAES S _— {OJ#]

e Claim 2. (Pythagoras Theorem) Suppose v,w € V' and (v,w) = 0. Then,
111 + lwll* = [lv — wl]®
This follows from a straightforward computation of ||v — w||* = (v — w,v — w)

Let w € W, w # w'. Then, w —w' € W so that, by Claim 1, (v — w’,w — w') = 0. By Claim 2,
we find

o = w'[] + |lw = w'[]* = |Jv — w]||?
. Hence, for any w # w’,

lo—w|P <llv-wl® = Jo—wl]<[v-uwl

Remark. Proposition 1 implies that the projection of v onto W is independent of the choice of
orthonormal basis B used to define it.



ORTHOGONAL COMPLEMENT

Let W C V be a subset. Define the orthogonal complement of W to be
WH={veV|{v,w)=0, forallwe W}
Proposition 2.
1. W+ is a subspace.
2. WnWwt ={oy}.

3. V=W4+WHie. for any v € V, there exist w € W and z € W+ such that v = w + z. In fact,
w, z are unique.

Proof:
1. Since (Oy,v) = 0, for any v € V, 0y € W+, Now, let u,v € W+, a,b € C, w € W. Then,
(au + bv,w) = alu,w) + b{v,w) =04+0=0
Hence, au + bv € W+.

2. Let v € WNW+. Then,
(v,v) =0 = V=0

3. Let v € V. Then,
v = projy (v) + (v — projy (v))

Claim 1 shows that v — projy, (v) € W+. Moreover, projy (v) € W, by construction. Hence,
V=W+WH

Suppose v = w + z = w' + 2/, with w,w’ € W, 2,2/ € W+. Then,
wtz=w+7 = w—w=7-zeWnW"={0y}

Hence, w — w’ = 0y and 2’ — 2 = Oy, so that w = w’, 2 = 2/ must be unique.



