Practice Midterm 1 Solution

Disclaimer: This Practice Midterm consists of problems of a similar difficulty as will be on the actual midterm. However, problems on the actual midterm may or may not be quite different in nature, and may or may not focus on different course material. However, the actual midterm will have a similar format: one true/false problem, one short-answer problem, three long-answer problems.

1. True/False (no justification required)
(a) If $\lim _{x \rightarrow a} f(x)$ exists then $f^{\prime}(a)$ exists.
(b) If $\log _{2}(x)=5$ then $x=32$.
(c) If $f(5)=-1$ and $f(x)$ is continuous at $x=5$ then $\lim _{x \rightarrow 5} f(x)=-1$.
(d) $\frac{d}{d x} x^{e}=x^{e}$.
(e) $\frac{d}{d x}\left(5 x e^{x}+\pi^{e} \cos (x)\right)=5 e^{x}-e \pi^{e-1} \sin (x)$

Solution:

(a) False
(b) True
(c) True
(d) False
(e) False
2. The graph of a function $f(x)$, defined for all x, is shown below. Using the given information, circle the true statements:

$$
\begin{array}{ccc}
\text { - } \lim _{x \rightarrow 0} f(x)=f(d) \mathbf{T} & \bullet \lim _{x \rightarrow b^{+}} f(x)>f(0) \mathbf{T} & \bullet \lim _{x \rightarrow a} f(x)=f(a) \mathbf{T} \\
\bullet \lim _{x \rightarrow \infty} f(x)=0 \mathbf{F} & \bullet \lim _{x \rightarrow d} f(x)=f(d) \mathbf{T} & \bullet f^{\prime}(a) \text { DNE } \mathbf{T} \\
\text { - } \lim _{x \rightarrow 0} f(x)=f^{\prime}(a-1) \mathbf{T} & \bullet \lim _{h \rightarrow 0} \frac{f(e+h)-f(e)}{h}<\lim _{x \rightarrow c} f(x) \mathbf{T} & \bullet \lim _{x \rightarrow b} f(x)=4 \mathbf{T}
\end{array}
$$

3. Let k, l be constants.
(a) Using limit laws, or otherwise, determine

$$
\lim _{x \rightarrow 1} \frac{x^{2}+k x-2}{x^{2}+5 x-5}
$$

Note: your answer will be in terms of k.
(b) Define

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}+k x-2}{x^{2}+5 x-5}, \quad x \neq 1 \\
l, \quad x=1
\end{array}\right.
$$

Determine all values of k, l so that $f(x)$ is continuous at $x=1$. Be careful to justify why you know that $f(x)$ will continuous at $x=1$ for these values of k, l.

Solution:

(a) numerator:

$$
\begin{gathered}
\lim _{x \rightarrow 1}\left(x^{2}+k x-2\right) \stackrel{L L 1, L L 2}{=} \lim _{x \rightarrow 1} x^{2}+k \lim _{x \rightarrow 1} x-\lim _{x \rightarrow 1} 2 \stackrel{L L 3, L L 5, L L 6}{=}\left(\lim _{x \rightarrow 1} x\right)^{2}+k \cdot 1-2 \\
\stackrel{L L 6}{=} 1^{2}+k-2=k-1
\end{gathered}
$$

denominator:

$$
\begin{gathered}
\lim _{x \rightarrow 1}\left(x^{2}+5 x-5\right) \stackrel{L L 1, L L 2}{=} \lim _{x \rightarrow 1} x^{2}+5 \lim _{x \rightarrow 1} x-\lim _{x \rightarrow 1} 5^{L L 3, L L L 5, L L 6}\left(\lim _{x \rightarrow 1} x\right)^{2}+5 \cdot 1-5 \\
\stackrel{L L 6}{=} 1^{2}+5-5=1
\end{gathered}
$$

Hence, using LL4,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+k x-2}{x^{2}+5 x-5}=\frac{k-1}{1}=k-1
$$

(b) In order that $f(x)$ is continuous at $x=1$ we need

$$
\lim _{x \rightarrow 1} f(x)=f(1) \quad \Longrightarrow \quad k-1=f(1)=l
$$

Here we note that, for $x \neq 1, f(x)=\frac{x^{2}+k x-2}{x^{2}+5 x-5}$, so that $\lim _{x \rightarrow 1} f(x)$ has already been computed in (a).
4. Let $f(x)=\sqrt{2-x}$.
(a) What is the domain of $f(x)$?
(b) Determine the tangent line to the graph $y=f(x)$ at $(1, f(1))$.
(c) Determine a formula for the inverse function $f^{-1}(x)$ and specify its domain.

Solution:

(a) We need $2-x \geq 0$ i.e. $2 \geq x$.
(b) We compute

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{1-h}-1}{h}
$$

Multiplying the last expression by $\frac{\sqrt{1-h}+1}{\sqrt{1-h}+1}$, we get

$$
\lim _{h \rightarrow 0} \frac{1-h-1}{h(\sqrt{1-h}+1)}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1-h}+1}=\frac{-1}{2}
$$

Hence, $f^{\prime}(1)=-1 / 2$. Thus, using the point-slope formula, the tangent line is

$$
y-1=-\frac{1}{2}(x-1) \Longrightarrow y=-\frac{x}{2}+\frac{3}{2}
$$

(c) Let $x=\sqrt{2-y}$: we want to write y in terms of x. Then, $f^{-1}(x)=y$.

$$
x=\sqrt{2-y} \Longrightarrow x^{2}=2-y \Longrightarrow y=2-x^{2}
$$

Hence, $f^{-1}(x)=2-x^{2}$. The domain of $f^{-1}(x)$ is the range of $f(x)$ i.e. all non-negative real numbers.
5. Let $f(x)=\left\{\begin{array}{l}-x, x<0 \\ x^{2}, x \geq 0\end{array}\right.$
(a) Using the limit definition of the derivative, explain why $f^{\prime}(0)$ does not exist.
(b) Draw the graph of the derivative $f^{\prime}(x)$.

Solution:

(a) We compute

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}(-1)=-1
$$

Also,

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}}{h}=\lim _{h \rightarrow 0^{+}} h=0
$$

Since the two one-sided limits are not equal the two sided limit does not exist. Hence, $f^{\prime}(0)$ does not exist.

(b)

