Practice Final: Solution

Disclaimer: This Practice Final consists of problems of a similar difficulty as will be on the actual final. However, problems on the actual final may or may not be quite different in nature, and may or may not focus on different course material. However, the actual final will have a similar format: one true/false problem, one short-answer problem, three long-answer problems.

1. True/False (no justification required)
(a) The function $f(x)=|x|$ does not possess an antiderivative.
(b) The formula $\int_{0}^{x} f^{\prime \prime}(x) d x=f^{\prime}(x)-f^{\prime}(0)$ holds.
(c) If $F(x)$ is an antiderivative of $f(x)$ then $F^{\prime}(x)=f(x)$.
(d) $\int e^{x^{2}} d x=\frac{e^{x^{2}}}{2 x}+C$
(e) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi \sin (\pi k / n)}{n}=2$

Solution:

(a) False: $f(x)$ is continuous and any continuous function possesses an antiderivative (SFTC).
(b) True: $F(x)=f^{\prime}(x)$ is an antiderivative of $f^{\prime \prime}(x)$.
(c) True: this is the definition.
(d) False: the derivative of the RHS is not equal to $e^{x^{2}}$.
(e) True : the limit is the right hand sum R_{n} for $f(x)=\sin (x)$ on the interval $0 \leq x \leq \pi$. Therefore, $\lim _{n \rightarrow \infty} R_{n}=\int_{0}^{\pi} \sin (x) d x=2$.
2. Compute the indefinite integral.
(a)

$$
\int x \cos (\pi x+e) d x
$$

(b)

$$
\int \frac{1}{x \ln (x)} d x
$$

Solution:

(a) We use integration by parts:

$$
u=x, \quad u^{\prime}=1, \quad v^{\prime}=\cos (\pi x+e), \quad v=\int \cos (\pi x+e) d x=\frac{1}{\pi} \sin (\pi x+e)
$$

Then, using $\int u v^{\prime}=u v-\int u^{\prime} v$,

$$
\begin{gathered}
\int x \cos (\pi x+e) d x=\frac{x}{\pi} \sin (\pi x+e)-\frac{1}{\pi} \int \sin (\pi x+e) d x \\
=\frac{x}{\pi} \sin (\pi x+e)+\frac{1}{\pi^{2}} \cos (\pi x+e)+C
\end{gathered}
$$

(b) We use method of u-substitution: let $u=\ln (x)$, so that $d u=\frac{1}{x} d x$. Then,

$$
\int \frac{1}{x \ln (x)} d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |\ln (x)|+C
$$

3. Determine the area bounded between the curves $y=1-x$ and $y=1-x^{2}$.

Solution:

We compute

$$
\int_{0}^{1} 1-x^{2}-\int_{0}^{1} 1-x d x=\int_{0}^{1} x-x^{2} d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

4. Consider the function

$$
f(x)=\int_{0}^{x^{2}} \sin \left(t^{2}\right) d t
$$

(a) Compute $f^{\prime}(x)$.
(b) Determine the equation of the tangent line to the curve $y=f(x)$ at $x=\pi$.

Solution:

(a) Let

$$
g(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t
$$

Then, by SFTC, $g^{\prime}(x)=\sin \left(x^{2}\right)$. We have

$$
f(x)=g\left(x^{2}\right) \quad \Longrightarrow \quad f^{\prime}(x)=g^{\prime}\left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime}=2 x \sin \left(x^{4}\right)
$$

(b) The slope of the tangent line is

$$
f^{\prime}(\pi)=2 \pi \sin \left(\pi^{4}\right)
$$

and the tangent line is

$$
y-f(\pi)=2 \pi \sin \left(\pi^{4}\right)(x-\pi) \quad \Longrightarrow \quad y=\int_{0}^{\pi^{2}} \sin \left(t^{2}\right) d t+2 \pi \sin \left(\pi^{4}\right)(x-\pi)
$$

5. Let $f(x)=1 / \sqrt{x-1}$, defined when $x>1$.
(a) Let $1<t<5$. Compute $A(t)=\int_{t}^{5} f(x) d x$.
(b) Compute $\lim _{t \rightarrow 1^{+}} A(t)$.
(c) True/False: the area bounded below $y=f(x), 1<x \leq 5$, is $\lim _{t \rightarrow 1^{+}} A(t)$. Justify your answer.

Solution:

(a)

$$
A(t)=\int_{t}^{5}(x-1)^{-1 / 2} d x=\left[2(x-1)^{1 / 2}\right]_{t}^{5}=2(2-\sqrt{t-1})
$$

(b) Hence, since $2(2-\sqrt{t-1})$ is defined and continuous at $t=1$,

$$
\lim _{t \rightarrow 1^{+}} 2(2-\sqrt{t-1})=2(2-\sqrt{1-1})=4
$$

(c) True: $A(t)$ is the area below the the graph $y=f(x)$ on the interval $t \leq x \leq 5$. Therefore, the area beneath the graph $1<x \leq$ will be the limit of this area as we let t get closer and closer, but not equal, to 1 . This is precisely the definition of the limit $\lim _{t \rightarrow 1^{+}} A(t)$.

