February 8 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 1.1, 1.3

KEYWORDS: function, increasing, decreasing, concave up/down, composition, inverse function

Functions

- A function f is a rule that assigns to each input x exactly one output $y=f(x)$. The collection of all inputs is called the domain of f; the collection of all possible outputs is called the range of f.

What do we care about?

Representations of functions:

- in words
- table
- graph i.e. in (x, y)-plane plot the points $y=f(x)$
- formula e.g. $f(x)=x^{2}+3 x-5$

Descriptions of functions:

- increasing/decreasing
- concave up/down
- Remark: we focus on graph/formula representations; we will develop techniques to plot the graph given a formula.
- Let $f(x), g(x)$ be two functions with the property that the range of $f(x)$ is contained in the domain of $g(x)$ i.e. outputs of $f(x)$ are inputs of $g(x)$. We can form the composition $g(f(x))$:

- Remark: the notation can be confusing: $g(f(x))$ means

DO f FIRST AND THEN DO g

Example:

1. Let X be the collection of people in the classroom, Y the collection of all places on Earth, Z the collection of real numbers. Define

$$
f: X \rightarrow Y \text {, people in classroom } \rightarrow \text { birthplace }
$$

$g: Y \rightarrow Z$, place on Earth \rightarrow distance from that place to Miller Library (in miles) The outputs of f are the inputs of g so we can form the composition $g(f(x))$: it is the function that assigns to each person in class the distance from their birthplace to the Miller Library.
2. Let $f(x)=x^{2}, g(x)=2 x^{2}+3 x+2$, where the domain for both functions is the collection of all real numbers. Then, outputs of f are inputs of g and we can form the composition:

$$
g(f(x))=g\left(x^{2}\right)=2\left(x^{2}\right)^{2}+3\left(x^{2}\right)+2=2 x^{4}+3 x^{2}+2
$$

- WARNING: Be careful! In the examples above:

1. $f(g(x))$ does not make sense: output of g is a number, while the input of f is a person. Can't form the composition in this instance.
2.

$$
f(g(x))=f\left(2 x^{2}+3 x+2\right)=\left(2 x^{2}+3 x+2\right)^{2}=4 x^{4}+12 x^{3}+17 x^{2}+12 x+4 \neq g(f(x))!!
$$

ORDER OF COMPOSITION IS IMPORTANT!

An interesting example:

$$
\begin{array}{ll}
f(x)=\frac{1}{1-x}, & \text { inputs all } x \neq 1 \\
g(x)=1-\frac{1}{x}, & \text { inputs all } x \neq 0
\end{array}
$$

Note: outputs of f are inputs of g : outputs of g are inputs of $f \Longrightarrow$ can form the compositions $f(g(x))$ and $(g(f(x))$.

$$
\begin{gathered}
f(g(x))=f\left(1-\frac{1}{x}\right)=\frac{1}{1-(1-1 / x)}=\frac{1}{\frac{1}{x}}=x \\
g\left(f(x)=g\left(\frac{1}{1-x}\right)=1-\frac{1}{\frac{1}{1-x}}=1-(1-x)=x\right.
\end{gathered}
$$

Remark:

1. We need to be careful to check that the output of f is an allowed input of g : we are saying that $f(x)=\frac{1}{1-x} \neq 0$, for any real number $x \neq 1$.
2. Remember what the notation $\frac{1}{a}$ means: $\frac{1}{a}$ is used to denote that unique real number b that has the property that $a b=1$. Any number of the form $\frac{1}{a}$ can't equal 0: if it did then we would have $a \cdot 0=1$, which is ridiculous.
