February 22 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.7, 1.8

KEYWORDS: continuous at a point, continuous, Intermediate Value Theorem

Properties, Applications of continuous functions

George-given Truths:

- all 'nice' functions - e.g. polynomial, rational, exponential, trigonometric, logarithmic - are continuous everywhere in their domain.
- piecewise functions are continuous, except possibly at jump discontinuities.
- Let $f(x), g(x)$ be continuous at $x=c$. Then,
- $f(x) \pm g(x)$ is continuous at $x=c$.
- $f(x) g(x)$ is continuous at $x=c$.
- $\frac{f(x)}{g(x)}$ is continuous at $x=c$, provided $g(c) \neq 0$.
- $k f(x)$ is continuous at $x=c$, for k constant.
- Let $f(x)$ be continuous at $x=c, g(x)$ continuous at $x=f(c)$. Then, $g(f(x))$ continuous at $x=c$.

Example:

1. Determine

$$
\lim _{x \rightarrow 1} \frac{x^{7}-9 x+5}{3 x^{2}+x}
$$

Solution: Let $f(x)=\frac{x^{7}-9 x+5}{3 x^{2}+x}$. Then, $f(x)$ is defined at $x=1$ and continuous at $x=1$ since it's a rational function. Hence

$$
\begin{gathered}
\lim _{x \rightarrow 1} f(x)=f(1) \quad \text { (i.e. (C2) holds for } f(x) \text { at } x=1 \text {) } \\
\Longrightarrow \lim _{x \rightarrow 1} \frac{x^{7}-9 x+5}{3 x^{2}+x}=f(1)=\frac{1^{7}-9 \cdot 1+5}{3 \cdot 1^{2}+1}=\frac{-3}{4}
\end{gathered}
$$

2. Determine

$$
\lim _{x \rightarrow-2} x 2^{x}
$$

Solution: Let $f(x)=x 2^{x}$. Then, $f(x)$ is defined at $x=1$ and continuous at $x=1$ since it's the product of $g(x)=x$ and $h(x)=2^{x}$. Hence

$$
\begin{aligned}
\lim _{x \rightarrow-2} f(x) & =f(-2) \quad \text { (i.e. (C2) holds for } f(x) \text { at } x=-2 \text {) } \\
& \Longrightarrow \lim _{x \rightarrow-2} x 2^{x}=f(-2)=(-2) \cdot 2^{-2}=-\frac{1}{2}
\end{aligned}
$$

Intermediate Value Theorem (IVT):

- Let $f(x)$ be a continuous function defined on the domain $a \leq x \leq b$. Suppose that $f(a)<z<(b)$ or $f(a)>z>f(b)$. Then, there is $a<c<b$ satisfying $f(c)=z$.

Application: Let $f(x)=x^{5}+7 x+6$. Then, $f(x)$ continuous everywhere. Observe:

$$
f(-1)=-2 \quad \text { and } \quad f(0)=6
$$

Let $z=0$, so that $f(-1)<z<f(0)$. Therefore, by IVT, there is $-1<c<0$ so that $f(c)=0$ i.e. the equation $f(x)=0$ has a solution in interval $-1<x<0$.

