February 20 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.7, 1.8

Keywords: continuous at a point, continuous

Continuity

- Let $f(x)$ be a function, $x=c$ in the domain of $f(x)$. Say that $f(x)$ is continuous at $x=c$ if
(A) $\lim _{x \rightarrow c} f(x)=L$ exists, and
(B) $L=f(c)$.

If $f(x)$ is continuous for every c in its domain then we say $f(x)$ is continuous.

Example:

1. $f(x)=2 x$, domain $=\mathbb{R}$. Our computation from a previous lecture showed that $\lim _{x \rightarrow 2} f(x)=4$. Since $f(2)=4$, we have that $f(x)$ is continuous at $x=2$.
More generally: using Limit Laws we can show that, for any real number c,

$$
\lim _{x \rightarrow c} 2 x \stackrel{L L 1}{=} 2 \lim _{x \rightarrow c} x \stackrel{L L 6}{=} 2 c
$$

Thus, since $f(c)=2 c, f(x)=2 x$ is continuous at every point in its domain. Hence, $f(x)$ is continuous.
2. Let $f(x)=\left\{\begin{array}{lc}2 x, & x \neq 2 \\ 0, & x=2\end{array}\right.$. Then, $\lim _{x \rightarrow 2} f(x)=4$. However, $f(2)=0 \neq 4$. Hence, $f(x)$ is not continuous at $x=2$.

3. Consider $f(x)=\left\{\begin{array}{ll}1, & x>0 \\ -1, & x \leq 0\end{array}\right.$. In this case, $\lim _{x \rightarrow 0^{+}} f(x)=1$ while $\lim _{x \rightarrow 0^{-}} f(x)=-1$, which we can determine using Limit Laws. Therefore, $\lim _{x \rightarrow 0} f(x)$ does not exist and $f(x)$ is not continuous at $x=0$.

4. Consider $f(x)=\left\{\begin{array}{lc}x^{2}, & x<0 \\ x, & x \geq 0\end{array}\right.$.

- $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}=\left(\lim _{x \rightarrow 0^{-}} x\right)^{2} \stackrel{L L 6}{=} 0^{2}=0$
- $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x \stackrel{L \underline{L 6}}{=} 0$

Hence, both one-sided limits exist and are equal, and $\lim _{x \rightarrow 0} f(x)=0$. Since $f(0)=$ $0, f(x)$ is continuous at $x=0$.

George-given Truths:

- all 'nice' functions - e.g. polynomial, rational, exponential, trigonometric, logarithmic - are continuous everywhere in their domain.
- piecewise functions are continuous, except possibly at jump discontinuities.

