

Math 121B: Single-Variable Calculus Spring 2019

Contact: gwmelvin@colby.edu

February 19 Summary

SUPPLEMENTARY REFERENCES:

- Calculus, Hughes-Hallet et al, Section 1.8

KEYWORDS: limits at infinity, rigorous definition of limit

LIMITS CONTD.

Other types of limits: limits at infinity

• If f(x) approaches a finite real number L as x gets very large then we write $\lim f(x) = L$.

• If f(x) approaches a finite real number L for x < 0 and as |x| gets very large then we write $\lim_{x \to -\infty} f(x) = L$.

Example: Let $f(x) = 1 - \frac{1}{x}$, $x \neq 0$. As x gets very large, $\frac{1}{x}$ becomes very small and $1 - \frac{1}{x}$ gets close to 1 - 0 = 1. Hence, $\lim_{x \to \infty} f(x) = 1$.

Similarly, as x gets very large in the negative direction, the quantity $\frac{1}{x}$ is negative and gets closer and closer to 0. Hence, $1 - \frac{1}{x}$ gets close to $1 + 0 = 1 \implies \lim_{x \to -\infty} f(x) = 1$ also.

Example: How to compute limits without the graph? We have some **rules of the road** or **allowed moves** known as **Limit Laws** (see handout).

For example, suppose we want to compute

$$\lim_{x \to 1} \frac{2x^3 - 5x + 7}{6x^2 + 3}$$

Use Limit Laws:

• numerator:

$$\lim_{x \to 1} (2x^3 - 5x + 7)$$

= $\lim_{x \to 1} 2x^3 - \lim_{x \to 1} 5x + \lim_{x \to 1} 7$, by LL2
= $2\lim_{x \to 1} x^3 - 5\lim_{x \to 1} x + 7$, by LL1, LL5
= $2(\lim_{x \to 1} x)^3 - 5 \cdot 1 + 7$, by LL3, LL6
= $2 \cdot 1^3 - 5 + 7$, by LL6
= 4

• denominator:

$$\lim_{x \to 1} (6x^2 + 3)$$

= $\lim_{x \to 1} 6x^2 + \lim_{x \to 1} 3$, by LL2
= $6\lim_{x \to 1} x^2 + 3$, by LL1, LL5
= $6(\lim_{x \to 1} x)^2 + 3$, by LL3
= $6 \cdot 1^2 + 3$, by LL6
= $9 \neq 0$

• combine: hence, since $\lim_{x\to 1} (6x^2 + 3) \neq 0$, we use LL4 to get

$$\lim_{x \to 1} \frac{2x^3 - 5x + 7}{6x^2 + 3} = \frac{\lim_{x \to 1} (2x^3 - 5x + 7)}{\lim_{x \to 1} (6x^2 + 3)} = \frac{4}{9}$$

• **Remark:** the fact that this limit is equal to what we'd obtain by inputting x = 1 into the expression and evaluating is a consequence of the fact that $f(x) = \frac{2x^3 - 5x + 7}{6x^2 + 3}$ is **continuous at** x = 1.

Continuity

Let f(x) be a function, x = c in the domain of f(x). Say that f(x) is continuous at x = c if

(C1) $\lim_{x\to c} f(x) = L$ exists, and

(C2)
$$L = f(c)$$

If f(x) is continuous for every c in its domain, we say that f(x) is continuous.