February 19 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.8

Keywords: limits at infinity, rigorous definition of limit

Limits contd.

Other types of limits: limits at infinity

- If $f(x)$ approaches a finite real number L as x gets very large then we write $\lim _{x \rightarrow \infty} f(x)=L$.
- If $f(x)$ approaches a finite real number L for $x<0$ and as $|x|$ gets very large then we write $\lim _{x \rightarrow-\infty} f(x)=L$.

Example: Let $f(x)=1-\frac{1}{x}, x \neq 0$. As x gets very large, $\frac{1}{x}$ becomes very small and $1-\frac{1}{x}$ gets close to $1-0=1$. Hence, $\lim _{x \rightarrow \infty} f(x)=1$.
Similarly, as x gets very large in the negative direction, the quantity $\frac{1}{x}$ is negative and gets closer and closer to 0 . Hence, $1-\frac{1}{x}$ gets close to $1+0=1 \Longrightarrow \lim _{x \rightarrow-\infty} f(x)=1$ also.

Example: How to compute limits without the graph? We have some rules of the road or allowed moves known as Limit Laws (see handout).
For example, suppose we want to compute

$$
\lim _{x \rightarrow 1} \frac{2 x^{3}-5 x+7}{6 x^{2}+3}
$$

Use Limit Laws:

- numerator:

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(2 x^{3}-5 x+7\right) \\
= & \lim _{x \rightarrow 1} 2 x^{3}-\lim _{x \rightarrow 1} 5 x+\lim _{x \rightarrow 1} 7, \quad \text { by LL2 } \\
= & 2 \lim _{x \rightarrow 1} x^{3}-5 \lim _{x \rightarrow 1} x+7, \quad \text { by LL1, LL5 } \\
= & 2\left(\lim _{x \rightarrow 1} x\right)^{3}-5 \cdot 1+7, \quad \text { by LL3, LL6 } \\
= & 2 \cdot 1^{3}-5+7, \quad \text { by LL6 } \\
= & 4
\end{aligned}
$$

- denominator:

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(6 x^{2}+3\right) \\
= & \lim _{x \rightarrow 1} 6 x^{2}+\lim _{x \rightarrow 1} 3, \quad \text { by LL2 } \\
= & 6 \lim _{x \rightarrow 1} x^{2}+3, \quad \text { by LL1, LL5 } \\
= & 6\left(\lim _{x \rightarrow 1} x\right)^{2}+3, \quad \text { by LL3 } \\
= & 6 \cdot 1^{2}+3, \quad \text { by LL } 6 \\
= & 9 \neq 0
\end{aligned}
$$

- combine: hence, since $\lim _{x \rightarrow 1}\left(6 x^{2}+3\right) \neq 0$, we use LL4 to get

$$
\lim _{x \rightarrow 1} \frac{2 x^{3}-5 x+7}{6 x^{2}+3}=\frac{\lim _{x \rightarrow 1}\left(2 x^{3}-5 x+7\right)}{\lim _{x \rightarrow 1}\left(6 x^{2}+3\right)}=\frac{4}{9}
$$

- Remark: the fact that this limit is equal to what we'd obtain by inputting $x=1$ into the expression and evaluating is a consequence of the fact that $f(x)=\frac{2 x^{3}-5 x+7}{6 x^{2}+3}$ is continuous at $x=1$.

Continuity

Let $f(x)$ be a function, $x=c$ in the domain of $f(x)$. Say that $f(x)$ is continuous at $x=c$ if
(C1) $\lim _{x \rightarrow c} f(x)=L$ exists, and
(C2) $L=f(c)$
If $f(x)$ is continuous for every c in its domain, we say that $f(x)$ is continuous.

